Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 x 53 x 12 + 4 x 6 x 87 - 3 x 8 x 40 = 53 x 24 + 24 x 87 - 24 x 40
= 24 x ( 53 + 87 - 40 )
= 24 x 100
= 2400.
b) 78 x 31 + 78 x 24 + 78 x 17 + 22 x 72 = 78 x ( 31 + 24 + 17 ) + 22 x 72
= 78 x 72 + 22 x 72
= 72 x ( 78 + 22 )
= 72 x 100
= 7200.
c) Cách 1. Ta có : 4-2=2 ; 6-4=2 ; 8-6=2 ; ... ; 100-98=2.
=> Đây là một dãy số cách đều 2 đơn vị.
Dãy số trên có số số hạng là : ( 100 - 2 ) : 2 + 1 = 50 ( số hạng )
Tổng dãy số là : ( 100 + 2 ) x 50 : 2 = 2550
Cách 2. A = 2 + 4 + 6 + 8 + ... + 98 + 100
A = 1x2 + 2x2 + 3x2 + 4x2 + ... + 49x2 + 50x2
A = ( 1 + 2 + 3 + 4 + ... + 49 + 50 ) x2
A = 1275 x 2
A = 2550.
Đáp số : a) 2400
b) 7200
c) A = 2550.
a) 2 x 53 x 12 + 4 x 6 x 87 - 3 x 8 x 40
= 24 x 53 + 24 x 87 - 24 x 40
= 24 x ( 53 + 87 - 40 )
= 24 x 100
= 2400
a) \(\frac{3}{4}x-\frac{1}{4}=2\left(x-3\right)+\frac{1}{4}x\)
\(\frac{3}{4}x-\frac{1}{4}=2x-6+\frac{1}{4}x\)
\(\frac{3}{4}x-2x-\frac{1}{4}x=\frac{1}{4}-6\)
\(x\left(\frac{3}{4}-2-\frac{1}{4}\right)=-\frac{23}{4}\)
\(-\frac{3}{2}x=-\frac{23}{4}\)
\(x=-\frac{23}{4}\div\left(-\frac{3}{2}\right)\)
\(x=\frac{23}{6}\)
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
x/2+x+x/3+x+x+x/4=23/4
⇒ 6x/12+12x/12+4x/12+12x/12+12x/12+3x/12=23/4
⇒ (6x+12x+4x+12x+12x+3x)/12=23/4
⇒ 49x/12=23/4
⇒ 49x=23/4.12
⇒ 49x=69
⇒ x=69/49
a) \(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
b) \(2^x.16=128\)
\(2^x=128:16\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
c) \(3^x:9=27\)
\(3^x=27.9\)
\(3^x=243\)
\(3^x=3^5\)
\(\Rightarrow x=5\)
d) \(x^4=x\)
\(\Rightarrow x=0\)hoac \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
e) \(\left(2x+1\right)^3=27\)
\(\left(2x+1\right)^3=3^3\)
\(\Rightarrow2x+1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
f) \(\left(x-2\right)^2=\left(x-2\right)^4\)
\(\left(x-2\right)^2-\left(x-2\right)^4=0\)
\(\left(x-2\right)^2-\left(x-2\right)^2.\left(x-2\right)^2=0\)
\(\left(x-2\right)^2\left[1-\left(x-2\right)^2\right]=0\)
\(\left(x-2\right)^2\left(1-x+2\right)\left(1+x-2\right)=0\)
\(\Rightarrow\left(x-2\right)^2=0\)hoac \(\orbr{\begin{cases}3-x=0\\x-1=0\end{cases}}\)
\(\Rightarrow x-2=0\)hoac \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(\Rightarrow x=2\)hoac \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
a) \(3^x=81\Leftrightarrow3^x=3^4\Rightarrow x=4\)
b)\(2^x\times16=128\Leftrightarrow2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)
c) \(3^x\div9=27\Leftrightarrow3^x\div3^2=3^3\Rightarrow x=5\)
d) \(x^4=x\Leftrightarrow x=1\)
e) \(\left(2x+1\right)^3=27\Leftrightarrow\left(2x+1\right)^3=3^3\Rightarrow2x+1=3 \)
\(\Rightarrow2x=3+1\Leftrightarrow2x=4\Rightarrow x=2\)
F)