Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, A = 3020 xx 3110 - 5 = 3020 xx 3109 + 3020 - 5`
`= 3020 xx 3109 + 3015 = B`.
`b, B = (2022-2)(2022+2) = 2022^2-4 < 2022^2 = A.`
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
1,=>2x-5=15 hoặc 2x-5=-15
...(xét 2 trường hợp rồi tự làm nhé)
2,2xy+2y+4y+4=0
x.(2y+2)+4(y+1)=0=>x(2y+2)=0 hoặc 4(y+1)=0
...(tự làm )
3,x+3=(x-2)+5
do x-2 chia hết cho x-2 mà x+3 chia hết cho x-2
=>5 chia hết cho x-2 =>x-2 thuộc {1;-1;5;-5}=>x thuộc {3;1;7;-3}
4, (y-z)+(z+x)=-10+11
(y+x)+(z-z)=1
y+x=1
kết hợp với x-y=-9 ta đưa ra bài toán tổng hiệu và tìm x và y .
thay x;y vào các điều kiện của bài toán ta tìm được x;y;z
5,xy=x+y
xy-x-y=0
x(y-1)-y=0
x(y-1)-y+1=1( cộng cả 2 vế vs 1)
x(y-1)-(y-1)=1
(y-1)(x-1)=1
=>có 2 trường hợp :
TH1:y-1=1 ; x-1=1
TH2:y-1=-1 ; x-1=-1
bạn tự tìm x;y nhé
TICK MÌNH NHÉ . XIN LỖI VÌ KO GIẢI CỤ THỂ CHO BẠN ĐƯỢC VÌ MÌNH RẤT BẬN
a) Ta có: \(\left(x+5\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\).
b) \(\left(3-x\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3-x=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow x=3\)
Vậy \(x=3\).
c) \(5\left(x+1\right)-3^2=3\left(2+x\right)-8\)
\(\Rightarrow5x+5-9=6+3x-8\)
\(\Rightarrow5x-3x=-5+9-8\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
Vậy \(x=-2.\)
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
A) |x| = |-7|
|x| = 7
=>x=7 hoặc x=(-7)
Vậy x thuộc {7;-7}
B) |x+1|=2
=>x+1=2 hoặc x+1=(-2)
x=2-1 x=(-2)-1
x=1 x=(-3)
Vậy x thuộc {1;-3}
C) |x+1|=3
=>x+1=3 hoặc x+1=(-3)
Vì x+1<0
nên x+1=(-3)
x=(-3)-1
x=(-4)
D) x +|-2| = 0
x+2=0
x=0-2
x=(-2)
E) 4.(3x – 4) – 2 = 18
4.(3x – 4) =18+2
4.(3x – 4) =20
3x-4=20 : 4
3x-4=5
3x=5+4
3x=9
x=9 : 3
x=3
a) \(\left|x\right|=\left|-7\right|\)
\(\Rightarrow\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Vậy ...
b) \(\left|x+1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Vậy ...
d) \(x+\left|-2\right|=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
Vậy ...
e) \(4\left(3x-4\right)-2=18\)
\(\Rightarrow4\left(3x-4\right)=20\)
\(\Rightarrow3x-4=5\)
\(\Rightarrow3x=9\Leftrightarrow x=3\)
Vậy ...
a, 2x - (-9) = x-(-15)
2x + 9 = x+15
2x - x = 15 -9
x = 6
b, 56 + 5x = 2x + 11
5x - 2x = 11 - 56
3x = -45
x = (-45) : 3
x = -15
a) 2x - (-9) = x - (-15)
=> 2x +9 = x + 15
=> 2x - x = 15 - 9
=> x(2-1) = 6
=> x.1 = 6
a) x^2(3-x)=0
=> TH1 : x^2 =0 => x=0
TH2 : 3-x=0 => x= 3-0=3
Vậy x=0; x=3
b) x(x-4) <0
=> TH1 : x<0
TH2 : x-4< 0 => x<4
Vậy x< 0 thì thỏa mãn yêu cầu
a,Nghiệm của (2\(x\) - 5)2022 là giá trị của \(x\) thỏa mãn
(2\(x\) - 5)2022 = 0
2\(x\) - 5 = 0
2\(x\) = 5
2\(x\) = 5:2
\(x\) = 2,5
b, Nghiệm của (3\(x\) + 4)2024 là giá trị của \(x\) thỏa mãn:
(3\(x\) + 4)2024 = 0
3\(x\) + 4 = 0
3\(x\) = -4
\(x\) = - 4 : 3
\(x\) = -\(\dfrac{4}{3}\)