Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3(2x+3)(3x-5)<0
\(\Rightarrow\left(3x+3\right)\left(3x-5\right)< 0\)
Mà \(3x+3>3x-5\)
\(\Rightarrow\hept{\begin{cases}3x+3>0\\3x-5< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x>-3\\3x< 5\end{cases}}\)
\(\Rightarrow-1< x< \frac{5}{3}\)
\(2x^2-4x=2x\left(x-2\right)>0\)
\(\Rightarrow x\left(x-2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}x< 0;x-2< 0\\x>0;x-2>0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x< 0\\x>2\end{cases}}\)
e)
A = \(\frac{x+5}{x-2}\) = \(\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Muốn A nguyên thì:
=> \(\frac{7}{x-2}\) ∈ Z
=> 7 ⋮ x - 2
=> x - 2 ∈ Ư (7)
=> x - 2 ∈ { 1; 7; -1; -7 }
=> x ∈ { 3; 9; -5; 1 }
a) (5x - 1)(2x - 1/3) = 0
\(\Rightarrow5x-1=0\) hoặc \(2x-\frac{1}{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=0+1\\2x=0+\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1:5=\frac{1}{5}\\x=\frac{1}{3}:2=\frac{1}{3}.\frac{1}{2}=\frac{1}{6}\end{matrix}\right.\)
Vậy x = 1/5 hoặc x = 1/6
\(a)\)\(\left(x-3\right)\left(x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=0\\x-\frac{1}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(x=3\) hoặc \(x=\frac{1}{2}\)
\(b)\) \(x^2-2x=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=2\)
\(c)\) \(\left(3x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=\frac{1}{3}\)
\(d)\) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy \(x=-1\) hoặc \(x=2\)
Chúc bạn học tốt ~
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(=>2x+\frac{3}{5}=\frac{3}{5}\)
\(2x=\frac{3}{5}-\frac{3}{5}\)
\(2x=0\)
\(x=0:2\)
\(x=0\)
b) \(\left(3x-1\right).\left(-\frac{1}{2x}+5\right)=0\)
=> \(\left(3x-1\right)=0\)hoặc \(\left(-\frac{1}{2x}+5\right)=0\)hoặc \(\left(3x-1\right)\)và\(\left(-\frac{1}{2x}+5\right)\)cùng bằng 0.
\(\orbr{\begin{cases}3x-1=0\\-\frac{1}{2x}+5=0\end{cases}}=>\orbr{\begin{cases}3x=1\\-\frac{1}{2x}=-5\end{cases}}=>\orbr{\begin{cases}x\in\varnothing\\2x=\frac{1}{5}\end{cases}}=>x=\frac{1}{5}:2=>x=\frac{1}{10}\)