Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6060\frac{50x+20}{x}=101\)
\(\Rightarrow\frac{6060x+50x+20}{x}=101\)
\(\Rightarrow\frac{6110x+20}{x}=101\)
\(\Rightarrow6110x+20=101x\)
\(\Rightarrow6110x-101x=-20\)
\(\Rightarrow6009x=-20\)
\(\Rightarrow x=-\frac{20}{6009}\)
\(a)\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x(x+3)}=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left[(\frac{1}{5}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3})\right]=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left[\frac{1}{5}-\frac{1}{x+3}\right]=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{5}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
\(b)x-(\frac{50x}{100}-\frac{25x}{200})=\frac{45}{4}\)
\(\Rightarrow x-(\frac{100x}{200}-\frac{25x}{200})=\frac{45}{4}\)
\(\Rightarrow x-\frac{5x}{8}=\frac{45}{4}\)
\(\Rightarrow\frac{3x}{8}=\frac{45}{4}\)
\(\Rightarrow3x=\frac{45}{4}\cdot8\)
\(\Rightarrow3x=90\Rightarrow x=30\)
\(c)1+2+3+4+...+x=820\)
Ta có : \(1+2+3+4+...+x=\frac{(1+x)\cdot x}{2}\)
Do đó : \(\frac{(1+x)\cdot x}{2}=820\)
\(\Rightarrow(1+x)\cdot x=820\cdot2\)
\(\Rightarrow(1+x)\cdot x=1640\)
\(\Rightarrow(1+x)\cdot x=40\cdot41\)
Vì x và x + 1 là hai số tự nhiên liên tiếp nên => x = 40
Chúc bạn học tốt :3
\(6060:\left[\left(50x+20\right):x\right]=101\)
\(\left(50x+20\right):x=60\)
\(50x+20=60x\)
\(60x-50x=20\)
\(10x=20\)
\(x=2\)
\(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+...+\frac{2}{x\left(x+3\right)}=\frac{101}{770}\)
\(\Rightarrow\)\(\frac{3}{2}.\left(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+...+\frac{2}{x\left(x+3\right)}\right)=\frac{101}{770}\).
\(\Rightarrow\)\(\frac{3}{40}+\frac{3}{88}+\frac{3}{154}+...+\frac{3}{x\left(x-3\right)}=\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x-1}\)
\(\Rightarrow\)\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{308}{1540}-\frac{303}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{5}{1540}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\)\(\frac{1}{308}\)
\(\Rightarrow\)\(x+3=308\)
\(\Rightarrow\)\(x=308-3\)
\(\Rightarrow\)\(x=305\)