Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(x+5)(3x-2)=0
=>x=-5 hoặc x=2/3
b: Đề thiếu rồi bạn
c: \(\Leftrightarrow x^2-4x-5=0\)
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
a) 2(x + 5) - x^2 - 5x = 0
<=> 2x + 10 - x^2 - 5x = 0
<=> -3x + 10 - x^2 = 0
<=> x^2 + 3x - 10 = 0
<=> (x - 2)(x + 5) = 0
<=> x - 2 = 0 hoặc x + 5 = 0
<=> x = 2 hoặc x = -5
b) 2(x - 3)(x^2 + 1) + 15x - 5x^2 = 0
<=> 2x^3 + 2x - 6x^2 - 6 + 15x - 5x^2 = 0
<=> 2x^3 + 17x - 11x^2 - 6 = 0
<=> (2x^2 - 7x + 3)(x - 2) = 0
<=> (2x^2 - x - 6x + 3)(x - 2) = 0
<=> [x(2x - 1) - 3(2x - 1)](x - 2) = 0
<=> (x - 3)(2x - 1)(x - 2) = 0
<=> x - 3 = 0 hoặc 2x - 1 = 0 hoặc x - 2 = 0
<=> x = 3 hoặc x = 1/2 hoặc x = 2
c) (x + 2)(3 - 4x) = x^2 + 4x + 2
<=> 3x - 4x^2 + 6 - 8x = x^2 + 4x + 2
<=> -5x - 4x^2 + 6 = x^2 + 4x + 2
<=> 5x + 4x^2 - 6 + x^2 + 4x + 2 = 0
<=> 9x + 5x^2 - 4 = 0
<=> 5x^2 + 10x - x - 4 = 0
<=> 5x(x + 2) - (x + 2) = 0
<=> (5x - 1)(x + 2) = 0
<=> 5x - 1 = 0 hoặc x + 2 = 0
<=> x = 1/5 hoặc x = -2
a) ( 5 - 2x )( 2x + 7 ) - 4x2 + 25 = 0
<=> ( 5 - 2x )( 2x + 7 ) + ( 5 - 2x )( 5 + 2x ) = 0
<=> ( 5 - 2x )( 2x + 7 + 5 + 2x ) = 0
<=> ( 5 - 2x )( 4x + 12 ) = 0
<=> \(\orbr{\begin{cases}5-2x=0\\4x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
b) ( 5x2 + 3x - 2 )2 - ( 4x2 - x - 5 )2 = 0 ( như này chứ nhỉ ? )
<=> [ ( 5x2 + 3x - 2 ) - ( 4x2 - x - 5 ) ][ ( 5x2 + 3x - 2 ) + ( 4x2 - x - 5 ) ] = 0
<=> ( 5x2 + 3x - 2 - 4x2 + x + 5 )( 5x2 + 3x - 2 + 4x2 - x - 5 ) = 0
<=> ( x2 + 4x + 3 )( 9x2 + 2x - 7 ) = 0
<=> ( x2 + x + 3x + 3 )( 9x2 + 9x - 7x - 7 ) = 0
<=> [ x( x + 1 ) + 3( x + 1 ) ][ 9x( x + 1 ) - 7( x + 1 ) ] = 0
<=> ( x + 1 )( x + 3 )( x + 1 )( 9x - 7 ) = 0
<=> ( x + 1 )2( x + 3 )( 9x - 7 ) = 0
<=> x + 1 = 0 hoặc x + 3 = 0 hoặc 9x - 7 = 0
<=> x = -1 hoặc x = -3 hoặc x = 7/9
c) 15x4 - 8x3 - 14x2 - 8x + 15 = 0
<=> 15x4 + 22x3 - 30x3 + 15x2 + 15x2 - 44x2 - 30x + 22x + 15 = 0
<=> ( 15x4 + 22x3 + 15x2 ) - ( 30x3 + 44x2 + 30x ) + ( 15x2 + 22x + 15 ) = 0
<=> x2( 15x2 + 22x + 15 ) - 2x( 15x2 + 22x + 15 ) + ( 15x2 + 22x + 15 ) = 0
<=> ( 15x2 + 22x + 15 )( x2 - 2x + 1 ) = 0
<=> ( 15x2 + 22x + 15 )( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}15x^2+22x+15=0\\\left(x-1\right)^2=0\end{cases}}\)
+) ( x - 1 )2 = 0 <=> x = 1
+) 15x2 + 22x + 15 = 15( x2 + 22/15x + 121/225 ) + 104/15 = 15( x + 11/25 )2 + 104/15 ≥ 104/15 > 0 ∀ x
Vậy phương trình có nghiệm duy nhất là x = 1
\(\Rightarrow2\left(x-3\right)\left(x^2+1\right)-5x^2+15x=0\)
\(\Rightarrow2\left(x-3\right)\left(x^2+1\right)-5x\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(2x^2+2-5x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x^2-5x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=...\end{cases}}}\)
Dùng máy tính bấm nốt nghiệm phương trình 2 nhé
\(^{x^2\left(9-15x^2\right)+3x\left(7+5x^2\right)=1}\)
\(9x^2-15x^4+21x+15x^3-1=0\)
\(\left(3x\right)^2-1^2-15x^4+21x+15x^3=0\)
\(\left(3x-1\right)\left(3x+1\right)5x\left(-x^3+7+5x^2\right)=0\)
\(TH1:3x-1=0\\ 3x=1\\ x=\frac{1}{3}\) \(TH2:3x+1=0\\ 3x=-1\\ x=\frac{-1}{3}\) \(TH3:5x=0\\ x=0\)
\(TH4:-x^3+7+5x^2=0\\ x^2\left(5-x\right)=7\)(loại)
Vậy x thuộc{1/3;-1/3;0}
Ta có:
(x2 - 3x + 2)(x2 + 15x + 56) + 8 = 0
\(\Leftrightarrow\) [(x - 2)(x - 1)][(x + 7)(x + 8)] + 8 = 0
\(\Leftrightarrow\) [(x - 2)(x + 8)][(x - 1)(x + 7)] + 8 = 0
\(\Leftrightarrow\) (x2 + 6x - 16)(x2 + 6x - 7) + 8 = 0 (*)
Đặt x2 + 6x - 16 = a \(\Leftrightarrow\) a = (x + 3)2 - 25 \(\ge\) -25
Phương trình (*) trở thành:
a(a + 9) + 8 = 0
\(\Leftrightarrow\) 4a2 + 36a + 32 = 0
\(\Leftrightarrow\) (2a + 9)2 = 49
\(\Leftrightarrow\) \(\left[{}\begin{matrix}a=-1\left(TMĐK\right)\\a=-8\left(TMĐK\right)\end{matrix}\right.\)
+) Nếu a = -1 thì (x + 3)2 - 25 = -1
\(\Leftrightarrow\) x = \(\pm\sqrt{24}-3\)
+) Nếu a = -8 thì (x + 3)2 - 25 = -8
\(\Leftrightarrow\) x = \(\pm\sqrt{17}-3\)
Vậy...
Lời giải:
a) \(x^3+5x^2-5=15x-32\)
Bạn xem lại xem có sai đề không
b)
\(8x^2+2x-15=0\)
\(\Leftrightarrow 16x^2+4x-30=0\)
\(\Leftrightarrow (4x+\frac{1}{2})^2-\frac{121}{4}=0\)
\(\Rightarrow \left[\begin{matrix} 4x+\frac{1}{2}=\sqrt{\frac{121}{4}}=\frac{11}{2}\\ 4x+\frac{1}{2}=-\sqrt{\frac{121}{4}}=\frac{-11}{2}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{5}{4}\\ x=\frac{-3}{2}\end{matrix}\right.\)
5x2 - 15x = 0
5x(x-3)=0
suy ra 2 trường hợp
x=0
x-3=0=>x=3
5x2-15x=0
5x(x-3) =0
TH1: 5x=0 TH2: x-3=0
=>x=0 => x=3
Vậy x thuộc {0;3}