Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+4x-3=0\)
\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)
\(\left(2x+1\right)^2-2^2=0\)
\(\left(2x+1-2\right).\left(2x+1+2\right)=0\)
\(\left(2x-1\right).\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)
\(x^4-3x^3-x+3=0\)
\(x^3.\left(x-3\right)-\left(x-3\right)=0\)
\(\left(x-3\right).\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(x^2.\left(x-1\right)-4x^2+8x-4=0\)
\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)
\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)
\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)
\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)
\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)
\(\left(x-1\right).\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(\begin{cases}x=1\\x=2\end{cases}\)
Tham khảo nhé~
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
a) 3x2 + 8x + 4 = 0
=> 3x2 + 6x + 2x + 4 = 0
=> 3x(x + 2) + 2(x + 2) = 0
=> (3x + 2)(x + 2) = 0
=> \(\orbr{\begin{cases}3x+2=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=-1\end{cases}}\)
b) 4x2 - 4x - 3 = 0
=> 4x2 - 6x + 2x - 3 = 0
=> 2x(2x - 3) + (2x - 3) = 0
=> (2x + 1)(2x - 3) = 0
=> \(\orbr{\begin{cases}2x+1=0\\2x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
\(a,3x^2+8x+4=0\)
\(\Rightarrow3x^2+6x+2x+4=0\)
\(\Rightarrow3x\left(x+2\right)+2\left(x+2\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=-2\end{cases}}}\)
Vậy....
a,4x^2-4x+1=0
4x^2-2x-2x+1=0
2x (2x-1)-(2x-1)=0
(2x-1)(2x-1)=0
(2x-1)^2=0
=>2x-1=0 <=> x=1/2
\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)
\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)
\(4x^2+8x=0\)
\(\Leftrightarrow4x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a) \(4x^2+8x=0\)
\(\Rightarrow4x\left(x+8\right)=0\)
\(\Rightarrow4x=0\) hoặc \(x+8=0\)
\(TH1:4x=0\Rightarrow x=4:0\Rightarrow x=0\)
\(TH2:x+8=0\Rightarrow x=0-8\Rightarrow x=-8\)
Vậy nghiệm của đa thức \(4x^2+8x=0\) là: \(\left\{0;-8\right\}\)