Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
Ta có : 3x3 + x2 - 13x + 5
= 3x3 + 6x2 - 5x2 - 3x - 10x + 5
= ( 3x3 + 6x2 - 3x ) - ( 5x2 + 10x - 5 )
= 3x( x2 + 2x - 1 ) - 5( x2 + 2x - 1 )
= ( x2 + 2x - 1 )( 3x - 5 )
=> ( 3x3 + x2 - 13x + 5 ) : ( x2 + 2x - 1 ) = 10x - 1
⇔ ( x2 + 2x - 1 )( 3x - 5 ) : ( x2 + 2x - 1 ) = 10x - 1
⇔ 3x - 5 = 10x - 1
⇔ 3x - 10x = -1 + 5
⇔ -7x = 4
⇔ x = -4/7
Câu 1:
Đặt \(x+1=a\). Khi đó \(x+3=a+2; x-1=a-2\).
PT đã cho tương đương với:
\((a+2)^4+(a-2)^4=626\)
\(\Leftrightarrow 2a^4+48a^2+32=626\)
\(\Leftrightarrow a^4+24a^2-297=0\)
\(\Leftrightarrow (a^2+12)^2=441\)
\(\Rightarrow a^2+12=\sqrt{441}=21\) (do \(a^2+12>0)\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Nếu $a=3$ thì \(x=a-1=2\)
Nếu $a=-3$ thì $x=a-1=-4$
Câu 2:
Đặt \(2x-1=a; x-1=b\). PT đã cho tương đương với:
\(a^3+b^3+(-a-b)^3=0\)
\(\Leftrightarrow a^3+b^3-(a+b)^3=0\)
\(\Leftrightarrow a^3+b^3-[a^3+b^3+3ab(a+b)]=0\)
\(\Leftrightarrow ab(a+b)=0\Rightarrow \left[\begin{matrix} a=0\\ b=0\\ a+b=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} 2x-1=0\\ x-1=0\\ 3x-2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=1\\ x=\frac{2}{3}\end{matrix}\right.\)
1. \(< =>\left(6x^2+31x+18\right)-\left(6x^2+13x+2\right)=x+1-a+6\)
\(< =>6x^2+31x+18-6x^2-13x-2=7\)
\(< =>18x+16=7\)
\(< =>18x=7-16\)
\(< =>18x=-9\)
\(< =>x=-\frac{9}{18}=-\frac{1}{2}\)
\(\text{a) }x^2+4x+3\\ =x^2+x+3x+3\\ =\left(x^2+x\right)+\left(3x+3\right)\\ =x\left(x+1\right)+3\left(x+1\right)\\ =\left(x+3\right)\left(x+1\right)\\ \)
\(\text{b) }x^2-13x+12\\ =x^2-x-12x+12\\ =\left(x^2-x\right)-\left(12x-12\right)\\ =x\left(x-1\right)-12\left(x-1\right)\\ =\left(x-12\right)\left(x-1\right)\\ \)
\(\text{c) }x^2+5x-6\\ =x^2-x+6x-6\\ =\left(x^2-x\right)+\left(6x-6\right)\\ =x\left(x-1\right)+6\left(x-1\right)\\ =\left(x-1\right)\left(x+1\right)\\ \)
\(\text{d) }2x^2+3x-5\\ =2x^2-2x+5x-5\\ =\left(2x^2-2x\right)+\left(5x-5\right)\\ =2x\left(x-1\right)+5\left(x-1\right)\\ =\left(2x+5\right)\left(x-1\right)\\ \)
\(\text{e) }a^{m+3}-a^m+a-1\\ =\left(a^{m+3}-a^m\right)+\left(a-1\right)\\ =a^m\left(a^3-1\right)+\left(a-1\right)\\ =a^m\left(a-1\right)\left(a^2+a+1\right)+\left(a-1\right)\\ =\left(a-1\right)\left[a^m\left(a^2+a+1\right)+1\right]\\ =\left(a-1\right)\left(a^{m+2}+a^{m+1}+1\right)\\ \)
\(x^2+4x+3=x\left(x+3\right)+\left(x+3\right)=\left(x+3\right)\left(x+1\right)\)
\(x^2-13x+12=x\left(x-12\right)-\left(x-12\right)=\left(x-12\right)\left(x-1\right)\)
\(x^2+3x-10=x\left(x-2\right)+5\left(x-2\right)=\left(x-2\right)\left(x+5\right)\)
\(x^2+5x-6=x\left(x-6\right)+\left(x-6\right)=\left(x-6\right)\left(x+1\right)\)
\(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
\(a^{m+3}-a^m+a-1=a^m\left(a^3-1\right)+\left(a-1\right)=a^m\left(a-1\right)\left(a^2+a+1\right)+\left(a-1\right)=\left(a-1\right)\left[a^m\left(a^2+a+1\right)+1\right]=\left(a-1\right)\left(a^{m+2}+a^{m+1}+a^m+1\right)\)
Đáp án là x = 5 nha bạn .