Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
a, (x+1).3 = 2.2
=>3 x+3 =4
=> 3x=1
=> x=1/3
b, (x-2) .4 =(x+1).3
=>4x-8=3x+3
=>4x-3x=8+3
=>x=11
c, lam tg tu cau b
d, (x-1)(x+3)=(x+2)(x-2)
\(x^2\)+3x-x-3=\(x^2\)-2x+2x-4
x^2 +2x-3=x^2-4
x^2-x^2+2x=3-4
2x=-1
x=-0,5
\(\frac{x+1}{2}=\frac{2}{3}\)
\(\Rightarrow3.\left(x+1\right)=2.2\)
\(\Rightarrow3x+3=4\)
\(\Rightarrow3x=4-3\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\frac{1}{3}\)
\(b,\frac{x-2}{3}=\frac{x+1}{4}\)
\(\Rightarrow4.\left(x-2\right)=3.\left(x+1\right)\)
\(\Rightarrow4x-8=3x+3\)
\(\Rightarrow4x-3x=3+8\)
\(\Rightarrow x=11\)
\(c,\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow7.\left(x-3\right)=5.\left(x+5\right)\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=25+21\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
\(d,\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
a)Ta có:
\(3^x-3^{x-3}=-234\)
\(\Rightarrow3^x-3^x\cdot3^3=-234\)
\(\Rightarrow3^x\cdot\left(1-3^3\right)=-234\)
\(\Rightarrow3^x\cdot\left(-26\right)=-234\)
\(\Rightarrow3^x=9\)
\(\Rightarrow x=2\)
Vậy x=2
\(\Rightarrow3^x=3^2\)
b) Ta có:
\(2^{x+1}\cdot3^x-6^x=216\)
\(\Rightarrow2^x\cdot2\cdot3^x-2^x\cdot3^x=216\)
\(\Rightarrow\left(2^x\cdot3^x\right)\cdot\left(2-1\right)=216\)
\(\Rightarrow6^x\cdot1=216\)
\(\Rightarrow6^x=6^3\)
\(\Rightarrow x=3\)
Vậy x=3
1) \(\frac{x-1}{3}=\frac{5-x}{7}\Leftrightarrow7.\left(x-1\right)=3.\left(5-x\right)\)
\(\Leftrightarrow7x-7=15-3x\)
\(\Leftrightarrow7x+3x=15+7\)
\(\Leftrightarrow10x=22\)
\(\Leftrightarrow x=\frac{11}{5}\)
2) \(\frac{x-1}{-5}=\frac{-20}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=\left(-20\right).\left(-5\right)=100\)
\(\Leftrightarrow100=\orbr{\begin{cases}10^2\\\left(-10\right)^2\end{cases}}\)
Nếu x - 1 = 10 => x = 11
Nếu x - 1 = -10 => x = -9
Vậy ....
3) \(3\sqrt{x-3}+5=\left|-8\right|\)
\(\Leftrightarrow3\sqrt{x-3}+5=8\)
\(\Leftrightarrow3\sqrt{x-3}=3\)
\(\Leftrightarrow\sqrt{x-3}=1\) (ĐK: \(x\ge3\))
\(\Leftrightarrow\left(\sqrt{x-3}\right)^2=1^2\)
\(\Leftrightarrow x-3=1\)
\(\Leftrightarrow x=4\) (nhận)
Vậy x = 4
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
3\(^{x+1}\) - 3\(^x\) = 1428
3\(^x\).( 3 - 1) = 1428
3\(^x\).2 = 1428
3\(^x\) = 1428: 2
3\(^x\) = 714
3\(^{x+1}\) là số lẻ \(\forall\) \(x\) ⇒ 3\(^x\) \(\ne\) 714 ∀ \(x\) ⇒ \(x\) \(\in\) \(\varnothing\)