Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3y5+3x3y5+5x3y5+...+(2k-1)x3y5 =3249x3y5
x3y5.[1+3+5+...+(2k-1)]=3249x3y5
=>1+3+5+...+(2k-1)=3249
\(\frac{\left(2k-1+1\right).\left[\left(2k-1-1\right):2\right]}{2}=3249\)
\(\frac{2k.\left[\left(2k-2\right):2+1\right]}{2}=3249\)
\(\frac{2k.\left(k-1+1\right)}{2}=3249\)
\(k^2=3249\)
\(k=57\)
a) \(2^{x+1}\cdot3^y=12^x\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=2x\\y=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b) \(10^x:5^y=20^y\Leftrightarrow20^y\cdot5^y=10^x\Leftrightarrow\left(20\cdot5\right)^y=10^x\Leftrightarrow100^y=10^x\Leftrightarrow10^{2y}=10^x\Leftrightarrow2y=x\)
c) \(\left\{{}\begin{matrix}2^x=4^{y-1}\\27^y=3^{x+8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2^x=2^{2y-2}\\3^{3y}=3^{x+8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\3y=x+8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\3y=2y-2+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=6\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3
x2017 = \(\frac{x^{2017}-2}{3}\)
\(\frac{3.x^{2017}}{3}=\frac{x^{2017}-2}{3}\)
\(\frac{3.x^{2017}}{3}-\frac{x^{2017}-2}{3}=0\)
\(\frac{3.x^{2017}-x^{2017}+2}{3}=0\)
\(\frac{2.x^{2017}+2}{3}=0\)
\(2.x^{2017}+2=0\)
\(2.x^{2017}=-2\)
\(x^{2017}=-1\)
\(x=-1\)
Lời giải:
Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{8}=t\)
\(\Rightarrow \left\{\begin{matrix} x=3t\\ y=7t\\ z=8t\end{matrix}\right.\)
Thay vào điều kiện đề bài:
\(2x^2+y^2+3z^2=316\)
\(\Leftrightarrow 2(3t)^2+(7t)^2+3(8t)^2=316\)
\(\Leftrightarrow t^2(2.3^2+7^2+3.8^2)=316\)
\(\Leftrightarrow t^2.259=316\Rightarrow t=\pm \sqrt{\frac{316}{259}}\)
Nếu \(t=\sqrt{\frac{316}{259}}\Rightarrow \left\{\begin{matrix} x=3t=3\sqrt{\frac{316}{259}}\\ y=7t=7\sqrt{\frac{316}{259}}\\ z=8t=8\sqrt{\frac{316}{259}}\end{matrix}\right.\)
Nếu \(t=-\sqrt{\frac{316}{259}}\Rightarrow \left\{\begin{matrix} x=3t=-3\sqrt{\frac{316}{259}}\\ y=7t=-7\sqrt{\frac{316}{259}}\\ z=8t=-8\sqrt{\frac{316}{259}}\end{matrix}\right.\)
P/s: số không được đẹp cho lắm.