Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow6x-9+4-2x=-3\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-3-6x\right)\left(2x-3+6x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-3-4x=0\\8x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{8}\end{matrix}\right.\)
`a)(x-6)^2-(x+6)^2=12`
`<=>(x-6-x-6)(x-6+x+6)=12`
`<=>-12.2x=12`
`<=>2x=-1`
`<=>x=-1/2`
Vậy `x=-1/2`
`b)36x^2-12x+1=81`
`<=>(6x-1)^2=81`
`<=>(6x-1-9)(6x-1+9)=0`
`<=>(6x-10)(6x+8)=0`
`<=>(3x-5)(3x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac53\\x=-\dfrac43\end{array} \right.\)
`c)x^2-4x-12=0`
`<=>x^2-6x+2x-12=0`
`<=>x(x-6)+2(x-6)=0`
`<=>(x-6)(x+2)=0`
`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\)
`d)x^2-5x-6=0`
`<=>x^2-6x+x-6=0`
`<=>x(x-6)+x-6=0`
`<=>(x-6)(x+1)=0`
`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\)
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
1, \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow x=0;x=\pm5\)
2, \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\Leftrightarrow x=-9;x=1\)
3, \(6x\left(x-2\right)=x-2\Leftrightarrow\left(6x-1\right)\left(x-2\right)=0\Leftrightarrow x=\frac{1}{6};x=2\)
4, \(7\left(x-2020\right)^2-x+2020=0\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)\left[7\left(x-2020\right)-1\right]=0\Leftrightarrow x=2020;x=\frac{14141}{7}\)
5, \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
6, \(x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow x=-1;x=3\)
\(1,\)
\(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2,\)
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow x^2-x+9x-9=0\)
\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
\(3,\)
\(6x\left(x-2\right)=x-2\)
\(\Leftrightarrow6x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{6}\end{cases}}\)
\(4,\)
\(7\left(x-2020\right)^2-x+2020=0\)
\(\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)[7\left(x-2020\right)-1]=0\)
\(\Leftrightarrow\left(x-2020\right)[7x-14141]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\7x=14141\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{14141}{7}\end{cases}}\)
\(5,\)
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
\(6,\)
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Ta có:
Vậy điều kiện để phân thức xác định là x ≠ 0 và x ≠ 1.
Bài 1:
\(36\left(x-5\right)^2-25\left(x-y+4\right)^2\)
\(=\left[6\left(x-5\right)\right]^2-\left[5\left(x-y+4\right)\right]^2\)
\(=\left[6\left(x-5\right)-5\left(x-y+4\right)\right]\left[6\left(x-5\right)+5\left(x-y+4\right)\right]\)
\(=\left(x+5y-50\right)\left(11x-5y-10\right)\)
Bài 2:
a) \(\left(4x-1\right)^2-4x+1=0\)
\(\left(4x-1\right)^2-\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(4x-1-1\right)=0\)
\(\left(4x-1\right)\left(4x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\frac{1}{2}\end{cases}}}\)
b) \(\left(3x\right)^2-\left(3x-1\right)^2=0\)
\(\left(3x-3x+1\right)\left(3x+3x-1\right)=0\)
\(6x-1=0\)
\(x=\frac{1}{6}\)
c) \(36x^2-25-\left(6x+5\right)\left(6x-5\right)=0\)
\(36x^2-25-36x^2+25=0\)
\(0=0\)( đúng với mọi x )
Bài 3 : xem lại đề
\(\left(36x^2-25\right)-\left(6x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(6x+5\right)\left(6x-5\right)-\left(6x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(6x+5\right)\left(6x-5-x-1\right)=0\)
\(\Leftrightarrow\left(6x+5\right)\left(5x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{6}\\x=\frac{6}{5}\end{cases}}\)
\(\left(36x^2-25\right)-\left(6x+5\right)\left(x+1\right)=0\Leftrightarrow\left(6x-5\right)\left(6x+5\right)-\left(6x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(6x+5\right)\left(5x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{6}\\x=\frac{6}{5}\end{cases}}\)