\(\sqrt{16}-\sqrt{25^2}\))

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2015

  - l-32l . l2x + 1l = 51.(√16−√252)

=>   - l-32l . l2x + 1l = 51. (4 - 25)

=>  - 9 . l2x + 1l = 51. -21

=>   - 9 . l2x + 1l = -1071

=>    l2x + 1l = -1071 : (-9)

=>    l2x + 1l = 119

=>  2x + 1 = 119     và     2x + 1 = -119

=>  x  = (119 - 1) : 2   và  x = (-119 - 1) : 2

=>  x = 59               và     x = -60

cái này mới đúng lúc nãy mình nhầm

23 tháng 10 2017

Bài 1:

a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)

TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)

TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)

b)  \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)

c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)

TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)

Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)

TH2: \(x< -\frac{3}{8}\)

Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)

Bài 2:  Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)

Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)

Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)

Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)

\(\Rightarrow x\in\left\{1;9;81\right\}\)

22 tháng 10 2017

 Bài 1 :

\(2\left(x-\sqrt{12}\right)^2=6\)

\(\Rightarrow\left(x-\sqrt{12}\right)^2=6:2=3\)

\(\Rightarrow x-\sqrt{12}=\sqrt{3}\)

\(\Rightarrow x=3\sqrt{3}\)

2 tháng 12 2019

\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}=\left|-13\right|\)

\(=-8+\frac{1}{2}.8-5+13\)

\(=4\)

\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(-\frac{2012}{2013}\right)^0\)

\(=\frac{1}{2}.10-\frac{1}{4}+1\)

\(=5-\frac{5}{4}\)

\(=\frac{15}{4}\)

\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+|-13|\)

\(=-12+\frac{1}{2}.8-5+13\)

\(=-12+4-5+13\)

\(=4\)

23 tháng 7 2019

1, \(a,\left(x+1\right)^2=3\)

\(\Rightarrow x+1=\pm\sqrt{3}\)

\(\Rightarrow x=\pm\sqrt{3}-1\)

\(b,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

\(\Rightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^4-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=\pm1\Rightarrow x=2or\text{ }x=0\end{cases}}\)

\(c,\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)

\(\Rightarrow x+\frac{1}{2}=\pm\sqrt{\frac{4}{25}}\)

\(\Rightarrow x+\frac{1}{2}=\pm\frac{2}{5}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{cases}}\)

2, \(a,\sqrt{x}=4\)

\(\Rightarrow\sqrt{x}=\sqrt{16}\)

\(\Rightarrow x=16\)

\(b,\sqrt{x+1}=5\)

\(\Rightarrow\sqrt{x+1}=\sqrt{25}\)

\(\Rightarrow x+1=25\)

\(\Rightarrow x=24\)

\(\Rightarrow5^{\left(x+2\right)\left(x+3\right)}=1\)

\(\Rightarrow5^{\left(x+2\right)\left(x+3\right)}=5^0\)

\(\Rightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)

\(d,\left(2x-1\right)^{12}=\left(x+1\right)^{12}\)

\(\Rightarrow\left(2x-1\right)^{12}\div\left(x+1\right)^{12}=1\)

\(\Rightarrow\) 

6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

14 tháng 7 2016

Bài 1 :

a. \(\left|x-\frac{1}{3}\right|< \frac{5}{2}\)

TH1 : nếu \(\left|x-\frac{1}{3}\right|>0\)

\(x-\frac{1}{3}< \frac{5}{3}\)

\(x< 2\)

TH2 : nếu \(\left|x-\frac{1}{3}\right|< 0\)

\(\frac{1}{3}-x< \frac{5}{3}\)

\(x>-\frac{4}{3}\)

14 tháng 7 2016

Bài 2 :

a. \(\left(x-2\right)^2=1\)

\(\left(x-2\right)^2-1=0\)

\(\left(x-2-1\right)\left(x-2+1\right)=0\)

\(\left(x-3\right)\left(x-1\right)=0\)

\(\left[\begin{array}{nghiempt}x-3=0\\x-1=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=3\\x=1\end{array}\right.\)

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

10 tháng 12 2017

1,

Ta có; \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

........

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng các vế ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)

2,Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến

3, 

3n+2-2n+2+3n-2n

= 3n.32-2n.22+3n-2n

= 3n(9 + 1) - 2n(4 + 1)

= 3n.10 - 2n.5

= 3n.10 - 2n-1.10

= 10(3n - 2n-1) chia hết cho 10

14 tháng 7 2018

a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)

\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)

\(\Leftrightarrow x=225\)

b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)

Vậy ....

c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

Vậy x = 0

d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)

Vậy x = 1

14 tháng 7 2018

a.\(2\sqrt{x}=20+10\)

\(2\sqrt{x}=30\)

\(\sqrt{x}=30:2\)

\(\sqrt{x}=15\)

\(x=15^2\)

x=225