Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x-2\right)\left[\left(3x\right)^2+3x\cdot2+2^2\right]-\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1\right]=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left[\left(3x\right)^3-1\right]=x-4\)
\(\Leftrightarrow x=-3\) ( thỏa mãn )
P/s : Đề câu b) viết lại nhé, mình không hiểu lắm :))
\(9\left(2x+1\right)=4\left(x-5\right)^2\)
\(\Leftrightarrow18x+9=4\left(x^2-10x+25\right)\)
\(\Leftrightarrow18x+9=4x^2-40x+100\)
\(\Leftrightarrow4x^2-58x+91=0\)
Ta có \(\Delta=58^2-4.4.91=1908,\sqrt{\Delta}=6\sqrt{53}\)
\(\Rightarrow x=\frac{58\pm6\sqrt{53}}{8}\)
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
a) 6x2 - 5x + 3 = 2x - 3x(2 - x)
<=> 6x2 - 5x + 3 = 2x - 6x + 3x2
<=> 6x2 - 5x + 3 = -4x + 3x2
<=> 6x2 - 5x + 3 + 4x - 3x2 = 0
<=> 3x2 - x + 3 = 0
=> Pt vô nghiệm
b) 25x2 - 9 = (5x + 3)(2x + 1)
<=> 25x2 - 9 = 10x2 + 5x + 6x + 3
<=> 25x2 - 9 = 10x2 + 11x + 3
<=> 25x2 - 9 - 10x2 - 11x - 3 = 0
<=> 15x2 - 12 - 11x = 0
<=> 15x2 + 9x - 20x - 12 = 0
<=> 3x(5x + 3) - 4(5x + 3) = 0
<=> (5x + 3)(3x - 4) = 0
<=> 5x + 3 = 0 hoặc 3x - 4 = 0
<=> x = -3/5 hoặc x = 4/3
1 <=>2x^3+2x^2+x^2+x+5x+5=5
<=>[x+1][2x^2+x+5]
2x^2+x+5>0=>x=-1
2 Đặt x+1=a; x-2=b;2x-1=a+b
<=>a^3+b^3=[a+b]^3
<=>3ab[a+b]=0
<=>3[x+1][x-2][2x-1]=0
<=>x=-1 hoặc x=2 hoặc x=1/2
Vậy phượng trình có tập nghiệm S={-1;2;1/2}
\(a)\)
\(\frac{1}{x+1}-\frac{x-1}{x}=\frac{3x+1}{x\left(x+1\right)}\)
\(\Leftrightarrow x-x^2+1=3x+1\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b)\)
\(\frac{\left(x+2\right)^2}{2x-3}-\frac{1}{1}=\frac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+4x+4-2x-3=x^2+10\)
\(\Leftrightarrow x^2+2x+1=x^2+10\)
\(\Leftrightarrow2x-9=0\)
\(\Leftrightarrow2x=9\)
\(\Leftrightarrow x=\frac{2}{9}\)
\(\Leftrightarrow6x^2+10x-6x-10=0\)
\(\Leftrightarrow6x^2+4x-10=0\)
Ta có \(\Delta=4^2+4.6.10=256,\sqrt{\Delta}=16\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-4+16}{12}=1\\x=\frac{-4-16}{12}=\frac{-5}{3}\end{cases}}\)
e mới lớp 5 nên chưa chắc ạ >:
\(2x\left(3x+5\right)-6x-10=0\)
\(=>6x^2+10x-6x-10=0\)
\(=>6x.\left(x-1\right)+10.\left(x-1\right)=0\)
\(=>\left(6x+10\right)\left(x-1\right)=0\)
\(=>\orbr{\begin{cases}6x+10=0\\x-1=0\end{cases}=>\orbr{\begin{cases}x=\frac{-10}{6}\\x=1\end{cases}}}\)