K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

Ta có: \(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow\left(2x^3-2x^2\right)-\left(5x^2-5x\right)+\left(2x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-5x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2x^2-4x\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(2x-1\right)=0\)

\(\Rightarrow x\in\left\{\frac{1}{2};1;2\right\}\)

3 tháng 2 2021

\(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow2\left(x^3-1\right)-7x\left(x-1\right)=0\)

\(\Leftrightarrow2\left(x-1\right)\left(x^2+x+1\right)-7x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2+2x+2-7x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-5x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=\frac{1}{2};x=2\)

Vậy tập nghiệm của phương trình là S = { 1 ; 1/2 ; 2 } 

29 tháng 1 2020

Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)

29 tháng 1 2020

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)

b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)

\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)

\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)

c) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

d) Xem lại đề

29 tháng 7 2019

1) \(2x^2-3x-2\)

\(=2x^2-4x+x-2\)

\(=2x\left(x-2\right)+x-2\)

\(=\left(2x+1\right)\left(x-2\right)\)

29 tháng 7 2019

2) \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(3x-10\right)\left(x+1\right)\)

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

2 tháng 10 2018

mk chịu mấy bài này thui

mk mới lp 6 à xl bn nha

2 tháng 10 2018

\(\left(5\cdot\left(x^2-3x+1\right)+x\cdot\left(1-5x\right)\right)-\left(x-2\right)=0\)

\(7-15x=0\)

\(-15x=-7\)

\(x=\frac{7}{15}=0.467\)

\(b,\)câu b dài quá nên mik lười, vậy mik ghi kết quả thôi nhé

\(x=\frac{2}{19}=0.105\)

\(c,\)câu c cũng vậy mik ghi kết quả thôi nhé bn

\(x=-\frac{6}{11}=-0.545\)

14 tháng 7 2020

Bài làm:

a) \(4x^2-7x+3=0\)

\(\Leftrightarrow\left(4x^2-4x\right)-\left(3x-3\right)=0\)

\(\Leftrightarrow4x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(4x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{4}\\x=1\end{cases}}\)

b) \(\left(4x^2-4\right)\left(x^2-x\right)=0\)

\(\Leftrightarrow4x\left(x-1\right)^2\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)(Do viết PT lỗi nên bạn tự giải nha)

c) \(6x^2-4x-2=0\)

\(\Leftrightarrow\left(6x^2-6x\right)+\left(2x-2\right)=0\)

\(\Leftrightarrow6x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow2\left(3x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)

Sa

14 tháng 7 2020

a) \(4x^2-7x+3=0\)

Dễ dàng nhận thấy a + b + c = 4 + ( -7 ) + 3 = 0 

Vậy nên phương trình đã cho có hai nghiệm phân biệt

 \(\hept{\begin{cases}x_1=1\\x_2=\frac{c}{a}=\frac{3}{4}\end{cases}}\)

Vậy \(S=\left\{1;\frac{3}{4}\right\}\)

b) \(\left(4x^2-4\right)\left(x^2-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x^2-4=0\\x^2-x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4\left(x^2-1\right)=0\\x\left(x-1\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\\x-1=0\Leftrightarrow x=1\\x=0\end{cases}}\)( chỗ này bạn thay bằng dấu hoặc nhé )

Vậy \(S=\left\{0;\pm1\right\}\)

c) \(6x^2-4x-2=0\)

Dễ dàng nhận thấy a + b + c = 6 + ( -4 ) + ( -2 ) = 0

Vậy nên phương trình đã cho có hai nghiệm phân biệt :

\(\hept{\begin{cases}x_1=1\\x_2=\frac{c}{a}=\frac{-2}{6}=-\frac{1}{3}\end{cases}}\)

Vậy \(S=\left\{1;-\frac{1}{3}\right\}\)

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

21 tháng 10 2021

a)

(x+4)(3x-5) = 0

=> x + 4 = 0 hoặc 3x-5 = 0

     x = -4                 x = 5/3

b)

  2x2 + 7x + 3 = 0

  2x2 + 6x + x + 3= 0

  (2x+1)(x+3) = 0

=> 2x+1 = 0 hoặc x + 3 = 0

    x = -1/2              x = -3