Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) Ta có: 2x2 - x + 1 = x(2x + 1) - 2x + 1 = x(2x + 1) - (2x + 1) + 2 = (x - 1)(2x + 1) + 2
Do (x - 1)(2x + 1) \(⋮\)2x + 1
=> 2 \(⋮\)2x + 1
=> 2x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}
Do : 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}
+) 2x + 1 = 1 => 2x = 0 => x = 0
+) 2x + 1 = -1 => 2x = -2 => x = -1
b) 2x + y + 2xy - 3 = 0
=> 2x(1 + y) + (1 + y) = 4
=> (2x + 1)(1 + y) = 4
=> 2x + 1;1 + y \(\in\)Ư(4) = {1; -1;2 ;-2; 4; -4}
Do: 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}
=> 1 + y \(\in\){4; -4}
Lập bảng :
2x + 1 | 1 | -1 |
1 + y | 4 | -4 |
x | 0 | -1 |
y | 3 | -5 |
Vậy ....
c) x2 + 2xy = 0
=> x(x + 2y) = 0
=> \(\hept{\begin{cases}x=0\\x+2y=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\\2y=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy x = y = 0
a) Ta có:A = 6x2 - 6x + 1 = 6(x2 - x + 1/4) - 1/2 = 6(x - 1/2)2 - 1/2
Ta luôn có : (x - 1/2)2 \(\ge\)0 \(\forall\)x --> 6(x - 1/2)2 \(\ge\) 0 \(\)x
=> 6(x - 1/2)2 - 1/2 \(\ge\)-1/2 \(\forall\)x
hay A \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra khi : (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2
Vậy Amin = -1/2 tại x = 1/2
\(a,A=6x^2-6x+1\)
\(=6\left(x^2-x+\frac{1}{6}\right)\)
\(=6\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+\frac{1}{6}\right]\)
\(=6\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{12}\right]\)
\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)
\(A_{min}=-\frac{1}{12}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Đk : \(x\ne5;x\ne0;x\ne4\)
a) ta có:
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)
Thay x= 3 vào biểu thức A , ta được :
\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
vậy ..............
b) \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(B=\frac{x+5}{2x}+\frac{6-x}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(B=\frac{\left(x-5\right)\left(x+5\right)+2x\left(6-x\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(B=\frac{x^2-25+12x-2x^2-2x^2+2x+50}{2x\left(x-5\right)}\)
\(B=\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)
c) Ta có :
\(P=A.B\)
\(P=\frac{x-5}{x-4}.\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)
\(P=\frac{-3x^2+25+14x}{2x\left(x-4\right)}\)
\(P=\frac{-3x^2+25+14x}{2x^2-8x}\)
a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
\(3x^2+10x-8=5x^2-2x+10\)
\(3x^2-5x^2+10x+2x-8-10=0\)
\(-2x^2+12x-18=0\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
b) \(\frac{x^2-x-6}{x-3}=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Tìm x , y ; biết :
1. x2 + 4y + 4y2 + 26 - 10x = 0
2. 4y2 + 34 - 10x + 12y + x2 =0
Giúp mk với khó quá
Lấy pt (2) - pt (1) ta có:
8y + 8 = 0
=> y = -1
Thay y = -1 vào pt (1) ta có:
x2 - 10x + 26 = 0
( Giải phương trình bậc 2 bằng máy tính casio )
Ta được: x là số phức => phương trình vô nghiệm
=> Không tìm được cặp x,y thảo mãn hệ phương trình trên.
\(a,x^2-5x\)
\(=x\left(x-5\right)\)
\(b,5x\left(x+5\right)+4x+20\)
\(=5x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(5x+4\right)\left(x+5\right)\)
\(c,7x\left(2x-1\right)-4x+2\)
\(=7x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(7x-2\right)-\left(2x-1\right)\)
\(d,x^2-16+2\left(x+4\right)\)
\(=x^2-16+2x+8\)
\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) )
\(e,x^2-10x+9\)
\(=x^2-x-9x+9\)
\(=x\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé )
\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)
\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)
\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)
Vậy ...
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
\(a,A=6x^2-6x+1\)
\(=6\left(x^2-x+\frac{1}{4}\right)-\frac{1}{2}\)
\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_A=-\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)
\(b,B=3+2x+3x^2\)
\(=3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{8}{3}\)
\(=3\left(x+\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Dấu = xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)
Vậy \(Min_B=\frac{8}{3}\Leftrightarrow x=-\frac{1}{3}\)
\(c,C=4x+2x^2-3\)
\(=2\left(x^2+2x+1\right)-5\)
\(=2\left(x+1\right)^2-5\ge-5\)
Dấu = xảy ra \(\Leftrightarrow x=-1\)
Vậy \(Min_C=-5\Leftrightarrow x=-1\)
\(d,D=10x+6+x^2\)
\(=\left(x^2+10x+25\right)-19\)
\(=\left(x+5\right)^2-19\ge-19\)
Dấu = xảy ra \(\Leftrightarrow x=-5\)
Vậy \(Min_D=-19\Leftrightarrow x=-5\)
\(e,E=8x^2-6x+3\)
\(=8\left(x^2-\frac{3}{4}x+\frac{9}{64}\right)+\frac{15}{8}\)
\(=8\left(x-\frac{3}{8}\right)^2+\frac{15}{8}\ge\frac{15}{8}\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{3}{8}\)
Vậy \(Min_E=\frac{15}{8}\Leftrightarrow x=\frac{3}{8}\)
\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)
\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)
\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)
\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)
\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)
\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)
= - 3 (đpcm)
~~~
\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)
\(=\frac{x+2+x+x-2}{x^2+2x}\)
\(=\frac{3x}{x\left(x+2\right)}\)
\(=\frac{3}{x+2}\)
\(A\in Z\)
\(\Leftrightarrow3⋮x+2\)
\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
\(-2x^2-10x-6=0\)\(\Leftrightarrow4x^2+20x+12=0\)\(\Leftrightarrow\left(4x^2+20x+25\right)-13=0\)\(\Leftrightarrow\left(2x+5\right)^2-\left(\sqrt{13}\right)^2=0\)\(\Leftrightarrow\left(2x+5+\sqrt{13}\right)\left(2x+5-\sqrt{13}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}2x+5+\sqrt{13}=0\\2x+5-\sqrt{13}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5-\sqrt{13}}{2}\\x=\frac{-5+\sqrt{13}}{2}\end{cases}}\)