Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(1) =1+a+b =0=>a+b=-1 (1)
A(2) =4+2a+b =5 =>2a + b =5-4=1 (2)
từ (1) (2) =>2a+b-(a+b)=1-(-1)
2a-a=a=1+1=2
a+b=-1
2+b=-1=>b=-1-2=-3
vậy A(3) =9+6-3=12
Ta có:\(\frac{5}{\sqrt{2x+1}+2}\)là số nguyên=>\(\sqrt{2x+1}+2=5\)=>\(\sqrt{2x+1}=5-2=3\)
=>\(\sqrt{2x+1}=\sqrt{9}\)=>2x+1=9=>2x=8=>x=4
Vậy x=4
bài 1:
a) y=f(0)=|1-0|+2=3
y=f(1)=|1-(-1)|+2=4
y=f(-1/2)=|1-(-1/2)|+2=7/2
b) f(x)=3 <=> |1-x|+2=3
|1-x|=3-2
|1-x|=1
=> \(\orbr{\begin{cases}1-x=1\\1-x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
f(x)=3-x <=> |1-x|+2=3-x
|1-x|=3-x-2
|1-x|=1-x
=> (1-x)-(1-x)=0
2.(1-x)=0
=> 1-x=0
=> x=1
Bài 2:
\(\left(\frac{3}{2}-\frac{2}{-5}\right):x-\frac{1}{2}=\frac{3}{2}\)
⇒ \(\frac{19}{10}:x-\frac{1}{2}=\frac{3}{2}\)
⇒ \(\frac{19}{10}:x=\frac{3}{2}+\frac{1}{2}\)
⇒ \(\frac{19}{10}:x=2\)
⇒ \(x=\frac{19}{10}:2\)
⇒ \(x=\frac{19}{20}\)
Vậy \(x=\frac{19}{20}.\)
Chúc bạn học tốt!
a) \(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=2x+3\\x+\frac{1}{2}=-\left(2x+3\right)\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x-x=\frac{1}{2}-3\\x+\frac{1}{2}=-2x-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x+2x=-3-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\3x=\frac{-7}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x=\frac{-7}{6}\end{array}\right.\)
Vậy \(x\in\left\{\frac{-5}{2};\frac{-7}{6}\right\}\)
\(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(Ta\) \(có\): \(x+\frac{1}{2}=2x+3\)
\(x+\frac{1}{2}=x+x+3\\\)
\(x+\frac{1}{2}=x+\left(x+3\right)\)
\(\Rightarrow\frac{1}{2}=x+3\)
\(\Rightarrow x=\frac{1}{2}-3\)
\(\Rightarrow x=-\frac{5}{2}\)
Vậy \(x=-\frac{5}{2}\)
b, \(\left|x+\frac{1}{5}\right|+\left|x+\frac{2}{5}\right|+\left|x+1\frac{2}{5}\right|=4x\)
\(Ta\) \(có\)
\(x+\frac{1}{5}+x+\frac{2}{5}+x+1\frac{2}{5}\)\(=4x\)
\(3x+\left(\frac{1}{5}+\frac{2}{5}+1\frac{2}{5}\right)=4x\)
\(3x+2=4x\)
\(3x+2=3x+x\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
Ta có
\(\left|2x-5\right|\ge0\)và \(\left|1-3x\right|\ge0\) với mọi x
=> Để \(\left|2x-5\right|+\left|1-3x\right|=0\)thì
\(\hept{\begin{cases}2x-5=0\\1-3x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=\frac{1}{3}\end{cases}}\)
Điều đó không đồng thời xảy ra.
Vậy không tồn tại x thỏa mãn yêu cầu đề bài
@Nguyễn Quang Dũng : Bạn chưa đủ trình nên bài này không đến tay bạn phải làm đâu :>>
| 2x - 5 | + | 1 - 3x | = 0 (*)
Ta có :
\(\left|2x-5\right|=\hept{\begin{cases}2x+5,\text{ nếu }2x+5\ge0\text{ hay }x\ge\frac{5}{2}\\5-2x,\text{ nếu }2x+5< 0\text{ hay }x< \frac{5}{2}\end{cases}}\)
\(\left|1-3x\right|=\hept{\begin{cases}1-3x,\text{ nếu }1-3x≥0 \text{hay }x≤\frac{1}{3}\\3x-1,\text{ nếu }1-3x>0\text{hay }x>\frac{1}{3}\end{cases}}\)
Ta có bảng :
Ta có 3 trường hợp sau :
+) Với \(x\le\frac{1}{3}\) khi đó (*) trở thành :
( 5 - 2x ) + ( 1 - 3x ) = 0
=> 6 - 5x = 0
=> 5x = 6
\(\Rightarrow x=\frac{6}{5}\left(\text{loại}\right)\)
+) Với \(\frac{1}{3}< x< \frac{5}{2}\)khi đó (*) trở thành :
( 5 - 2x ) + ( 3x - 1 ) = 0
=> 4 + x = 0
=> x = -4 ( loại )
+) Với \(x≥\frac{5}{2}\)khi đó (*) trở thành :
( 2x - 5 ) + ( 3x - 1 ) = 0
=> 5x - 6 = 0
=> 5x = 6
=> x = \(\frac{6}{5}\)( loại )
Vậy không có giá trị x thỏa mãn