Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x - 1). (3 - x) + (x -2 ) . (x + 3) = ( 1-x ) . (x - 2)
<=>(2x - 1). (3 - x) = ( 1-x ) . (x - 2) - (x -2 ) . (x + 3)
<=>(2x - 1). (3 - x) = (x - 2) (1-x-x-3)
<=>(2x - 1). (3 - x) = (x - 2) (-2x-2)
\(\Leftrightarrow6x-2x^2-x+x=-2x^2-2x+4x+4\)
\(\Leftrightarrow-2x^2+2x^2+6x+2x-4x=4\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
1.X2-2X-4y2-4y
=x2-2x+1-(4y2+4y+1)
=(x+1)2-(2y+1)2
=>(x+1-2y-1)(x+1+2y+1)
=(x-2y)(x+2y+2)
2.x4+2x3-4x-4
=(x2)2-22+2x3-4x
=(x2-2)(x2+2)+2x(x2-2)
=(x2-2)(x2+2+2x)
a) \(2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)
\(\Leftrightarrow5x=-17\)
\(\Rightarrow x=-\frac{17}{5}\)
b) \(\left(x+2\right)^2-2\left(x-3\right)=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+4x+4-2x+6=x^2+2x+1\)
\(\Leftrightarrow10=1\)
=> vô nghiệm
c) \(\left(x-1\right)^2+\left(x-2\right)^2=2\left(x+4\right)^2-\left(22x+27\right)\)
\(\Leftrightarrow x^2-2x+1+x^2-4x+4=2x^2+8x+8-22x-27\)
\(\Leftrightarrow8x=-24\)
\(\Rightarrow x=-3\)
a) 2( x - 1 )2 + ( x + 3 )2 = 3( x - 2 )( x + 1 )
<=> 2( x2 - 2x + 1 ) + x2 + 6x + 9 = 3( x2 - x - 2 )
<=> 2x2 - 4x + 2 + x2 + 6x + 9 = 3x2 - 3x - 6
<=> 2x2 - 4x + x2 + 6x - 3x2 + 3x = -6 - 2 - 9
<=> 5x = -17
<=> x = -17/5
b) ( x + 2 )2 - 2( x - 3 ) = ( x + 1 )2
<=> x2 + 4x + 4 - 2x + 6 = x2 + 2x + 1
<=> x2 + 4x - 2x - x2 - 2x = 1 - 4 - 6
<=> 0x = -9 ( vô lí )
Vậy phương trình vô nghiệm
c) ( x - 1 )2 + ( x - 2 )2 = 2( x + 4 )2 - ( 22x + 27 )
<=> x2 - 2x + 1 + x2 - 4x + 4 = 2( x2 + 8x + 16 ) - 22x - 27
<=> 2x2 - 6x + 5 = 2x2 + 16x + 32 - 22x - 27
<=> 2x2 - 6x - 2x2 - 16x + 22x = 32 - 27 - 5
<=> 0x = 0 ( đúng ∀ x ∈ R )
Vậy phương trình nghiệm đúng ∀ x ∈ R
1.
a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$
$=x^2+2x+4+\frac{10}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên.
Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$
$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$
b.
\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)
Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$
$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$
$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$
$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$
Bài 2:
$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.
$\Rightarrow P$ nguyên với mọi $x$ nguyên.
(2x - 1).(3 - x) + (x - 2).(x + 3) = (1 - x).(x - 3)
<=> -x2 + 8x - 9 = 3x - x2 - 2
<=> -x2 + 8x = 3x - x2 - 2 + 9
<=> -x2 + 8x = 3x - x2 - 7
<=> -x2 + 8x - (-x2 + 3x) = 3x - x2 - 7 - (-x3 + 3x)
<=> 5x = 7
<=> x = 5/7
=> x = 5/7
\(\left(2x-1\right)\left(3-x\right)+\left(x-2\right)\left(x+3\right)=\left(1-x\right)\)
\(-x^2+8x-9=3x-x^2-2\)
\(-x^2+8x=3x-x^2-7\)
\(5x=7\)
\(x=7:5\)
\(x=\frac{7}{5}\)