Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân cả 2 vế của đẳng thức với 1/2 ta được
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{x\left(x+1\right)}=\frac{2014}{2015}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}=\frac{2014}{2015}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-......+\frac{1}{x}-\frac{1}{x+1}=\frac{2014}{2015}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2014}{2015}\)
\(=>\frac{1}{x+1}=\frac{1}{2}-\frac{2014}{2015}\)
\(\frac{1}{x+1}=-\frac{2013}{4030}\)
hay \(1:\left(x+1\right)=-\frac{2013}{4030}\)
\(x+1=-\frac{4030}{2013}\)
\(=>x=-\frac{6043}{2013}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{x\left(x+1\right)}=\frac{215}{216}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{215}{216}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{215}{216}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{215}{216}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{216}\)
\(\Leftrightarrow x=216-1=215\)
\(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
\(3x-\frac{3}{2}-5x-3=-x+\frac{1}{5}\)
\(3x-5x+x=\frac{1}{5}+3+\frac{3}{2}\)
\(-x=\frac{47}{10}\)
\(x=\frac{-47}{10}\)
\(\Rightarrow\frac{4x^2-4x+1}{3}-\frac{3}{2}\left(x^2+6x+9\right)=\frac{1}{3}\left(x^2-1\right)+2x\)
\(\Rightarrow\frac{4x^2-4x+1}{3}-\frac{3x^2+18x+27}{2}=\frac{x^2-1}{3}+2x\)
\(\Rightarrow8x^2-8x+2-9x^2-54x-81=2x^2-2+12x\)
\(\Rightarrow-3x^2-74x-77=0\)
\(\Delta=5476-4.\left(-77\right).\left(-3\right)=4552\)
\(\Rightarrow\sqrt{\Delta}=\sqrt{4552}\)
\(\Rightarrow x=\frac{-74+\sqrt{4552}}{6};x=\frac{-74-\sqrt{4552}}{6}\)
\(\frac{\left(2x-1\right)^2}{3}-\frac{3.\left(x+3\right)^2}{2}=\frac{x^2-1}{3}+2x\)
Qui đồng lên là tìm được
\(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2011}:2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2011}\)
\(\Leftrightarrow x+1=2011\)
\(\Leftrightarrow x=2010\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{1}{x\times\left(x+1\right)\div2}=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.......+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(1-\frac{2}{x+1}=\frac{2009}{2011}\)
\(\frac{2}{x+1}=1-\frac{2009}{2011}\)
\(\frac{2}{x+1}=\frac{2}{2011}\)
\(x+1=2011\)
\(x=2011-1\)
\(\Rightarrow x=2010\)
\(\frac{1}{7}-\frac{8}{7}:8-3:\frac{3}{4}.\left(-2\right)^2\)
=\(\frac{1}{7}-\frac{1}{7}-4.4\)
=0-16
=-16
\(\Rightarrow4x-\left(\frac{4}{5.7.9}+\frac{4}{7.9.11}+...+\frac{4}{99.101.103}\right)=\frac{2}{83224}=\frac{1}{41612}\)
\(4x-\left(\frac{9-5}{5.7.9}+\frac{11-7}{7.9.11}+...+\frac{103-99}{99.101.103}\right)=\frac{1}{41612}\)
\(4x-\left(\frac{1}{5.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.11}+...+\frac{1}{99.101}-\frac{1}{101.103}\right)=\frac{1}{41612}\)
\(4x-\left(\frac{1}{5.7}-\frac{1}{101.103}\right)=\frac{1}{41612}\)
Từ đó tìm ra x