Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+4x+1\)
\(=\left(2x\right)^2+2.2x.1+1\)
\(=\left(2x+1\right)^2\)
\(1+12x+36x^2\)
\(=1+2.6x+\left(6x\right)^2\)
\(=\left(1+6x\right)^2\)
a) \(25x^2-2=0\)
\(=>\left(5x\right)^2-\left(\sqrt{2}\right)^2=0\)
\(=>\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)=0\)
\(=>\hept{\begin{cases}5x-\sqrt{2}=0\\5x+\sqrt{2}=0\end{cases}}\)
\(=>\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
b) \(10x-x^2-25=0\)
\(=>-x^2-5x-5x-25=0\)
\(=>-x\left(x+5\right)-5\left(x+5\right)=0\)
\(=>\left(x+5\right)\left(-x-5\right)=0\)
\(=>\hept{\begin{cases}x+5=0\\-x-5=0\end{cases}}\)
\(=>\hept{\begin{cases}x=-5\\x=-5\end{cases}}\)
\(x^2+8xy+16y^2+2x+8y-3\)
\(=x^2+2.x.4y+\left(4y\right)^2+2\left(x+4y\right)-3\)
\(=\left(x+4y\right)^2+2\left(x+4y\right)+1-2^2\)
\(=\left(x+4y+1\right)^2-2^2\)
\(=\left(x+4y+1-2\right)\left(x+4y+1+2\right)\)
\(=\left(x+4y-1\right)\left(x+4y+3\right)\)
\(4x^2+4xy+y^2+10x+5y-6\)
\(=\left(2x\right)^2+2.2x.y+y^2+5\left(2x+y\right)-6\)
\(=\left(2x+y\right)^2+5\left(2x+y\right)-6\)
\(=\left(2x+y\right)^2+2\left(2x+y\right).\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{7}{2}\right)^2\)
\(=\left(2x+y+\dfrac{5}{2}\right)^2-\left(\dfrac{7}{2}\right)^2\)
\(=\left(2x+y+\dfrac{5}{2}-\dfrac{7}{2}\right)\left(2x+y+\dfrac{5}{2}+\dfrac{7}{2}\right)\)
\(=\left(2x+y-1\right)\left(2x+y+6\right)\)
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
a, sửa đề : \(25x^2+4y^2-10x+12y+10=0\)
\(\Leftrightarrow25x^2-10x+1+4y^2+12y+9=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 1/5 ; y = -3/2
b, \(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+2\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 2 ; y = -3
\(a)\)
\(25x^2+4y^2-10x+12x+10=0\)
\(\Leftrightarrow\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-2.5x.1-1^2]+[\left(2y\right)^2+2.2y.3+3^{20}]=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
\(\Leftrightarrow\left(5x-1\right)^2=0\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)
\(\Leftrightarrow\left(2y+3\right)^2=0\Leftrightarrow2y+3=0\Leftrightarrow2y=-3\Leftrightarrow y=\frac{-3}{2}\)
\(b)\)
\(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3x^2-12x+12+2y^2+12y+18=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Mà: \(3\left(x-2\right)^2\ge0\forall x;2\left(y+3\right)^2\ge0\forall y\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)chỉ khi: \(x-2=y+3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-3\end{cases}}\)
a) \(x^4-10x^3+25x^2=0\)
\(\Leftrightarrow x^2\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=0\\\left(x-5\right)^2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
a) x4 - 10x3 + 25x2 = (x2)2 - 2.x2.5x + (5x)2 = (x2 - 5x)2 = 0 => x(x - 5) = 0 => x = 0 hay x - 5 = 0 => x = 0 ; 5
b) x3 + 3x2 + 3x + 1 = x3 + 3.x2.1 + 3.x.12 + 13 = (x + 1)3 = 0 => x + 1 = 0 => x = -1
a,x^2(x^2-10x+25)=0
x^2(x-5)^2=0
=> x^2=0 hoac (x-5)^2=0
=>x=0 hoac 5
Đề bài sai hoặc thiếu
Hoặc là giải pt nghiệm nguyên, hoặc là chỗ \(16y^2\) phải là dấu "+"
Trong trường hợp \(-16y^2\) là \(16y^2\)
\(\Leftrightarrow25x^2+10x+1+16y^2+8y+1=0\)
\(\Leftrightarrow\left(5x+1\right)^2+\left(4y+1\right)^2=0\)
Do \(\left\{{}\begin{matrix}\left(5x+1\right)^2\ge0\\\left(4y+1\right)^2\ge0\end{matrix}\right.\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\left(5x+1\right)^2=0\\\left(4y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+1=0\\4y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{5}\\y=-\frac{1}{4}\end{matrix}\right.\)