K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2019

Đề bài sai hoặc thiếu

Hoặc là giải pt nghiệm nguyên, hoặc là chỗ \(16y^2\) phải là dấu "+"

NV
19 tháng 6 2019

Trong trường hợp \(-16y^2\)\(16y^2\)

\(\Leftrightarrow25x^2+10x+1+16y^2+8y+1=0\)

\(\Leftrightarrow\left(5x+1\right)^2+\left(4y+1\right)^2=0\)

Do \(\left\{{}\begin{matrix}\left(5x+1\right)^2\ge0\\\left(4y+1\right)^2\ge0\end{matrix}\right.\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\left(5x+1\right)^2=0\\\left(4y+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x+1=0\\4y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{5}\\y=-\frac{1}{4}\end{matrix}\right.\)

28 tháng 9 2018

\(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1\)

\(=\left(2x+1\right)^2\)

\(1+12x+36x^2\)

\(=1+2.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

a) \(25x^2-2=0\)

\(=>\left(5x\right)^2-\left(\sqrt{2}\right)^2=0\)

\(=>\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)=0\)

\(=>\hept{\begin{cases}5x-\sqrt{2}=0\\5x+\sqrt{2}=0\end{cases}}\)

\(=>\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)

b) \(10x-x^2-25=0\)

\(=>-x^2-5x-5x-25=0\)

\(=>-x\left(x+5\right)-5\left(x+5\right)=0\)

\(=>\left(x+5\right)\left(-x-5\right)=0\)

\(=>\hept{\begin{cases}x+5=0\\-x-5=0\end{cases}}\)

\(=>\hept{\begin{cases}x=-5\\x=-5\end{cases}}\)

2 tháng 8 2018

\(x^2+8xy+16y^2+2x+8y-3\)

\(=x^2+2.x.4y+\left(4y\right)^2+2\left(x+4y\right)-3\)

\(=\left(x+4y\right)^2+2\left(x+4y\right)+1-2^2\)

\(=\left(x+4y+1\right)^2-2^2\)

\(=\left(x+4y+1-2\right)\left(x+4y+1+2\right)\)

\(=\left(x+4y-1\right)\left(x+4y+3\right)\)

\(4x^2+4xy+y^2+10x+5y-6\)

\(=\left(2x\right)^2+2.2x.y+y^2+5\left(2x+y\right)-6\)

\(=\left(2x+y\right)^2+5\left(2x+y\right)-6\)

\(=\left(2x+y\right)^2+2\left(2x+y\right).\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{7}{2}\right)^2\)

\(=\left(2x+y+\dfrac{5}{2}\right)^2-\left(\dfrac{7}{2}\right)^2\)

\(=\left(2x+y+\dfrac{5}{2}-\dfrac{7}{2}\right)\left(2x+y+\dfrac{5}{2}+\dfrac{7}{2}\right)\)

\(=\left(2x+y-1\right)\left(2x+y+6\right)\)

13 tháng 7 2017

a)  2x2 - 98 = 0

     2x2        = 0 + 98

     2x2        = 98

       x2        = 98 : 2

       x2         = 49

       x          = \(\sqrt{49}\)

=>   x   = 7

13 tháng 7 2017

Ta có : 2x2 - 98 = 0

=> 2(x2 - 49) = 0

Mà : 2 > 0

Nên x2 - 49 = 0

=> x2 = 49

=> x2 = -7;7

10 tháng 8 2021

a, sửa đề : \(25x^2+4y^2-10x+12y+10=0\)

\(\Leftrightarrow25x^2-10x+1+4y^2+12y+9=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)

Đẳng thức xảy ra khi x = 1/5 ; y = -3/2 

b, \(3x^2+2y^2-12x+12y+30=0\)

\(\Leftrightarrow3\left(x^2-4x+4\right)+2\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)

Đẳng thức xảy ra khi x = 2 ; y = -3 

\(a)\)

\(25x^2+4y^2-10x+12x+10=0\)

\(\Leftrightarrow\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)

\(\Leftrightarrow[\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)

\(\Leftrightarrow[\left(5x\right)^2-2.5x.1-1^2]+[\left(2y\right)^2+2.2y.3+3^{20}]=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)

\(\Leftrightarrow\left(5x-1\right)^2=0\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)

\(\Leftrightarrow\left(2y+3\right)^2=0\Leftrightarrow2y+3=0\Leftrightarrow2y=-3\Leftrightarrow y=\frac{-3}{2}\)

\(b)\)

\(3x^2+2y^2-12x+12y+30=0\)

\(\Leftrightarrow3x^2-12x+12+2y^2+12y+18=0\)

\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)

Mà: \(3\left(x-2\right)^2\ge0\forall x;2\left(y+3\right)^2\ge0\forall y\)

\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)chỉ khi: \(x-2=y+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-3\end{cases}}\)

5 tháng 8 2016

a) \(x^4-10x^3+25x^2=0\)

\(\Leftrightarrow x^2\left(x^2-10x+25\right)=0\)

\(\Leftrightarrow x^2\left(x-5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=0\\\left(x-5\right)^2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)

b) \(x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

5 tháng 8 2016

a,  x4-10x3+25x2=0

<=> x2(x2-10x+25)=0

<=>x2(x-5)2=0

<=>x2=0 hoặc (x-5)2=0

<=>x=0 hoặc x=5

Vậy...

b, x3+3x2+3x+1=0

<=> (x+1)3=0

<=>x+1=0

<=>x=-1 Vậy...

5 tháng 8 2016

a) x4 - 10x3 + 25x2 = (x2)2 - 2.x2.5x + (5x)2 = (x2 - 5x)2 = 0 => x(x - 5) = 0 => x = 0 hay x - 5 = 0 => x = 0 ; 5

b) x3 + 3x2 + 3x + 1 = x3 + 3.x2.1 + 3.x.12 + 13 = (x + 1)3 = 0 => x + 1 = 0 => x = -1

5 tháng 8 2016

a,x^2(x^2-10x+25)=0

x^2(x-5)^2=0

=> x^2=0 hoac (x-5)^2=0

=>x=0 hoac 5