Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\\ \Leftrightarrow\dfrac{4\left(3x+2\right)}{24}-\dfrac{6\left(3x-2\right)}{24}-\dfrac{45}{24}=0\\ \Leftrightarrow12x+24-18x+12-45=0\\ \Leftrightarrow-6x-9=0\\ \Leftrightarrow x=-\dfrac{3}{2}\)
2, ĐKXĐ:\(x\ne\pm3\)
\(\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{x\left(3+x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{8x-6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6-3x-x^2-8x+6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow-2x^2-10x+12=0\\ \Leftrightarrow x^2+5x-6=0\\ \Leftrightarrow\left(x-1\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
\(a,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\)
\(\Leftrightarrow4\left(3x+2\right)-6\left(3x-2\right)=45\)
\(\Leftrightarrow12x+8-18x+12=45\)
\(\Leftrightarrow12x-18x=45-12-8\)
\(\Leftrightarrow-6x=25\)
\(\Leftrightarrow x=\dfrac{-25}{6}\)
Vậy \(S=\left\{\dfrac{-25}{6}\right\}\)
\(b,\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\left(ĐKXĐ:x\ne3;x\ne-3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(3-x\right)-x\left(3+x\right)=8x-6\)
\(\Leftrightarrow3x-x^2+6-2x-3x-x^2=8x-6\)
\(\Leftrightarrow-x^2-x^2+3x-2x-3x-8x=-6+6\)
\(\Leftrightarrow-2x^2-10x=0\)
\(\Leftrightarrow-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;5\right\}\)
b: \(\Leftrightarrow\dfrac{x-2}{A}=\dfrac{\left(5x-1\right)\left(x-2\right)}{x^2\left(5x-1\right)+3\left(5x-1\right)}=\dfrac{x-2}{x^2+3}\)
hay \(A=x^2+3\)
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x, do đó :
\(\left|x+1\right|+\left|2x+15\right|+\left|3x+6041\right|\ge0\forall x\)
\(\Leftrightarrow7x\ge0\)
\(\Leftrightarrow x\ge0\)
Từ điều kiện này của x ta có phương trình :
\(x+1+2x+15+3x+6041=7x\)
\(\Leftrightarrow6x+6057=7x\)
\(\Leftrightarrow7x-6x=6057\)
\(\Leftrightarrow x=6057\)
Vậy tập nghiệm của pt là S = { 6057 }
1:
a: =>28x-8=9x+3
=>19x=11
=>x=11/19
b: =>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặc x=7
(x-1)(2x^2-8)=0
\(\Leftrightarrow\left(x-1\right)\left(2x^2-8\right)=0\\ \left(2x^3-8x-2x^2+8\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=\dfrac{8}{2}\)
3x^2-8x+5=0
áp dụng công thức bậc 2 ta có:
\(x=\dfrac{-\left(-8\right)\pm\sqrt{\left(-8\right)^2-4.3.5}}{2.3}\)
\(\Rightarrow x=\dfrac{5}{3};x=1\)
(7x-1).2x-7x+1=0
\(\Leftrightarrow\left(7x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{7};x=\dfrac{1}{2}\)
a: \(\dfrac{3x+2}{4}-\dfrac{3x+1}{3}=\dfrac{5}{6}\)
=>3(3x+2)-4(3x+1)=10
=>9x+6-12x-4=10
=>-3x+2=10
=>-3x=8
=>x=-8/3
b: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{9x-10}{4-x^2}\)
=>(x-1)(x-2)-x(x+2)=-9x+10
=>x^2-3x+2-x^2-2x=-9x+10
=>-5x+2=-9x+10
=>x=2(loại)
\(\Leftrightarrow6x^2-14x+4-6x^2-12x+18-7x+3=0\)
\(\Leftrightarrow-33x=-25\Rightarrow x=\frac{25}{33}\)
2( 3x - 1 )( x - 2 ) - 6( x - 1 )( x + 3 ) = 7x - 3
<=> 2( 3x2 - 7x + 2 ) - 6( x2 + 2x - 3 ) = 7x - 3
<=> 6x2 - 14x + 4 - 6x2 - 12x + 18 = 7x - 3
<=> -26x + 22 = 7x - 3
<=> -26x - 7x = -3 - 22
<=> -33x = -25
<=> x = 25/33
<=> -36x =