\(-12\left(x-5\right)+7\left(3-x\right)=5\)

\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Giải:

a) \(-12\left(x-5\right)+7\left(3-x\right)=5\)

\(\Leftrightarrow-12x+60+21-7x=5\)

\(\Leftrightarrow-19x+81=5\)

\(\Leftrightarrow-19x=5-81\)

\(\Leftrightarrow-19x=-76\)

\(\Leftrightarrow x=-\dfrac{76}{-19}=4\)

Vậy \(x=4\).

b) \(5\left|2x-10\right|=20\)

\(\Leftrightarrow\left|2x-10\right|=\dfrac{20}{5}=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-10=4\\2x-10=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=14\\2x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

Vậy \(x=7\) hoặc \(x=3\).

c) \(A=\left|2x-4\right|+2009\)

\(\left|2x-4\right|\ge0\forall x\)

\(\Leftrightarrow A=\left|2x-4\right|+2009\ge2009\forall x\)

\(\Rightarrow\) Giá trị nhỏ nhất của biểu thức A là 2009

\(\Leftrightarrow\left|2x-4\right|=0\)

\(\Leftrightarrow x=2\)

Vậy \(x=2\).

d) \(B=2005-\left|x-5\right|\)

\(\left|x-5\right|\ge0\)

\(\Leftrightarrow B=2005-\left|x-5\right|\le2005\)

\(\Rightarrow\) Giá trị lớn nhất của biểu thức B là 2009

\(\Leftrightarrow\left|x-5\right|=0\) \(\Leftrightarrow x=5\) Vậy \(x=5\). Chúc bạn học tốt!
15 tháng 10 2019

                                                                Bài giải

Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !

Câu 1 : Tìm GTNN

\(H=\left|2x+5\right|+\left|8-2x\right|\)

Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :

\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)

\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)

\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)

\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)

\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)

9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16

11 tháng 8 2020

c,\(43+x=2.5^2-\left(x-57\right)\)

\(< =>43+x=50-x+57\)

\(< =>2x=50+57-43\)

\(< =>x=\frac{107-43}{2}=32\)

d,\(-3.2^2\left(x-5\right)+7\left(3-x\right)=5\)

\(< =>-12.\left(x-5\right)+7.\left(3-x\right)=5\)

\(< =>-12x+60+21-7x=5\)

\(< =>-19x=5-81=-76\)

\(< =>x=-\frac{76}{-19}=4\)

11 tháng 8 2020

Bài 2: 

a) \(A=\left|x-3\right|+10\)

Vì \(\left|x-3\right|\ge0\forall x\)\(\Rightarrow\left|x-3\right|+10\ge10\forall x\)

hay \(A\ge10\)

Dấu " = " xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)

Vậy \(minA=10\Leftrightarrow x=3\)

b) \(B=-7+\left(x-1\right)^2\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-7+\left(x-1\right)^2\ge-7\forall x\)

hay \(B\ge-7\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=-7\Leftrightarrow x=1\)

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2

19 tháng 1 2017

Câu B=.....\(-5\)

nhé ko phải trừ \(55\)

trừ 5 nhé

19 tháng 1 2017

a) Ta có: \(-\left|x\right|\le0\)

\(-\left(y+4\right)^4\le0\)

\(\Rightarrow-\left|x\right|-\left(y+4\right)^4\le0\)

\(\Rightarrow A=10-\left|x\right|-\left(y+4\right)^4\le10\)

Vậy \(MAX_A=10\) khi \(x=0;y=-4\)

b) Hình như sai đề thì phải

30 tháng 1 2017

bài tập tết nâng cao phải ko

mk cũng có nhưng chưa làm dc

27 tháng 1 2020

tìm 2 số nguyên a và b biết :a+b=-1 và a.b=-12.Giup mình nha

15 tháng 7 2018

a)  \(3\left(4-2x\right)-2\left(x+3\right)=12-7x\)

\(\Leftrightarrow\)\(12-6x-2x-6=12-7x\)

\(\Leftrightarrow\)\(6-8x=12-7x\)

\(\Leftrightarrow\)\(x=-6\)

Vậy...

b)  \(\left|16+\right|3\left(x-2\right)||-5=20\)

\(\Leftrightarrow\)\(\left|16+\right|3\left(x-2\right)||=25\)(1)

Ta thấy:  \(\left|3\left(x-2\right)\right|\ge0\)\(\Rightarrow\)\(16+\left|3\left(x-2\right)\right|>0\)

nên từ (1)   \(\Rightarrow\)  \(16+\left|3\left(x-2\right)\right|=25\)

                   \(\Leftrightarrow\)\(\left|3\left(x-2\right)\right|=9\)

                   \(\Leftrightarrow\)  \(\orbr{\begin{cases}3\left(x-2\right)=9\\3\left(x-2\right)=-9\end{cases}}\)

                  \(\Leftrightarrow\) \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

Vậy....

15 tháng 7 2018

c)   \(\left|-5-3^2\right|-||3x+5|-7.2^3|=3^9:3^7\)

\(\Leftrightarrow\)\(14-||3x+5|-56|=9\)

\(\Leftrightarrow\)\(||3x+5|-56|=5\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|-56=5\\\left|3x+5\right|-56=-5\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|=61\\\left|3x+5\right|=51\end{cases}}\)

đến đây bn giải tiếp nhé