Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 1.2 + 2.3 + 3.4 + 4.5 +.....+ 98.99
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... +98.99.(100 - 97)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 98.99.100
=> 3A = 98.99.100
=> A = 98.99.100 / 3
=> A = 323400
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{10}{11}\)
=>\(1-\frac{1}{x+1}=\frac{10}{11}\)
=>\(\frac{1}{x+1}=1-\frac{10}{11}\)
=>\(\frac{1}{x+1}=\frac{1}{11}\)
=>x+1=11
=>x=10
a, 53 x 39 + 47 x 39 + 53 x 21- 47 x 21
= ( 53 + 47 ) x 39 + ( 53 - 47 ) x 21
= 100 x 39 + 6 x 21
= 3900 + 126
= 4026
Mấy phần khác bạn tự làm đi
\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{x\left(x+1\right)}=\frac{64}{13}\)
\(\Leftrightarrow5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{64}{13}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{13}\div5\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{65}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{64}{65}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{65}\)
\(\Rightarrow x+1=65\Rightarrow x=65-1=64\)
\(\text{Vậy }x=64\)
\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(100-10\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)
\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=1.2=2\)
\(\Rightarrow\left(x+\dfrac{206}{100}\right)=\dfrac{5}{2}:2=\dfrac{5}{2}.\dfrac{1}{2}=\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{5}{4}-\dfrac{206}{100}=\dfrac{125}{100}-\dfrac{206}{100}\)
\(\Rightarrow x=-\dfrac{81}{100}\)
c; 17\(\dfrac{2}{31}\) - (\(\dfrac{15}{17}\) + 6\(\dfrac{2}{31}\))
= 17 + \(\dfrac{2}{31}\) - \(\dfrac{15}{17}\) - 6 - \(\dfrac{2}{31}\)
= (17 - 6) - \(\dfrac{15}{17}\) + (\(\dfrac{2}{31}\) - \(\dfrac{2}{31}\))
= 11 - \(\dfrac{15}{17}\)+ 0
= \(\dfrac{172}{17}\)
b; 130\(\dfrac{25}{28}\) + 120\(\dfrac{17}{35}\)
= 130 + \(\dfrac{25}{28}\) + 120 + \(\dfrac{17}{35}\)
= (130 + 120) + (\(\dfrac{25}{28}\) + \(\dfrac{17}{35}\))
= 250 + (\(\dfrac{125}{140}\) + \(\dfrac{68}{140}\))
= 250 + \(\dfrac{193}{140}\)
= 250\(\dfrac{193}{140}\)
Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)
\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow x+\dfrac{103}{50}=5\)
hay \(x=\dfrac{147}{50}\)
Đặt A = 1.2 + 2.3 + 3.4 + ... + 98.99
A = 1/3 . ( 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3)
A = 1/3 . [ 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 98.99.(100-97)
A = 1/3 . ( 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 98.99.100 - 97.98.99)
A = 1/3 . [(1.2.3 + 2.3.4 + 3.4.5 + ... + 98.99.100) - ( 0.1.2 + 1.2.3 + 2.3.4 + ... + 97.98.99)]
A = 1/3 . ( 98.99.100 - 0.1.2)
A = 1/3 .98.99.100
A = 323400
Ta có: 323400x/26950 = 12/6/7 : 3/2
12x = 14 × 2/3
12x = 28/3
x = 28/3 : 12
x = 28/3 × 1/12 = 7/9
Vậy x = 7/9