Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(1/2 + 1/4 + 1/8 + 1/16) = 8/16 + 4/16 + 2/16 + 1/16 = 15/16.
1/2 + 1/6 + 1/12 + 1/20 +…+ 1/132 = 1/(1.2) + 1/(2.3) + 1/(3.4) + 1/(4.5) +…+1/(11.12)
= (1 – 1/2) + (1/2 – 1/3) + (1/3 – 1/4) + (1/4 – 1/5) +…+ (1/11 – 1/12)
= 1 – 1/12 = 11/12
Vậy x = (15/16) : (11/12) = 45/44.
(1/2+1/4+1/8+1/16):x=1/2+1/6+1/12+1/20+...+1/132
(1-1/2+1/2-1/4+1/4-1/8+1/8-1/16):x=1/1x2+1/2x3+1/3x4+1/4x5+...+1/11x12
(1-1/16):x=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/11-1/12
15/16:x=1-1/12
15/16:x=11/12
x=15/16:11/12
x=45/44
(1/2+1/4+1/8+1/16):x=1/2+1/6+1/12+.....+1/132
15/16 : x = 1/1x2+1/2x3+1/3x4+.........+1/11x12
15/16 : x = 1-1/2+1/2-1/3+1/3-1/4+........+1/11-1/12
15/16 :x = 1-1/12
15/16 : x = 11/12
x = 15/16 : 11/12
x= 45/44
1/2 + 1/6 + 1/20 +........+1/110 + 1/132 =
1/2 + 1/2x3 + 1/3x4 + 1/4x5 +....+ 1/10x11 + 1/11x12
= 1/2 + 1/2 - 1/3 + 1/3 -1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11 +1/11 - 1/12
= 1/2 + 1/2 - 1/12 = 1 - 1/12 = 11/12
Đáp số : 11/12
đúng mình cái nha
a; - \(\dfrac{10}{13}\) + \(\dfrac{5}{17}\) - \(\dfrac{3}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{11}{20}\)
= - (\(\dfrac{10}{13}\) + \(\dfrac{3}{13}\)) + (\(\dfrac{5}{17}\) + \(\dfrac{12}{17}\)) - \(\dfrac{11}{20}\)
= - 1 + 1 - \(\dfrac{11}{20}\)
= 0 - \(\dfrac{11}{20}\)
= - \(\dfrac{11}{20}\)
b; \(\dfrac{3}{4}\) + \(\dfrac{-5}{6}\) - \(\dfrac{11}{-12}\)
= \(\dfrac{9}{12}\) - \(\dfrac{10}{12}\) + \(\dfrac{11}{12}\)
= \(\dfrac{10}{12}\)
= \(\dfrac{5}{6}\)
c; [13.\(\dfrac{4}{9}\) + 2.\(\dfrac{1}{9}\)] - 3.\(\dfrac{4}{9}\)
= [\(\dfrac{52}{9}\) + \(\dfrac{2}{9}\)] - \(\dfrac{4}{3}\)
= \(\dfrac{54}{9}\) - \(\dfrac{4}{3}\)
= \(\dfrac{14}{3}\)
2n+1/n+1 có gt nguyên
<=>2n+2-1/n+1
2(n+1)-1/n+1
2-(1/n+1)
để 2n+1/n+1 có gt nguyên
<=>1/n+1 có gt nguyên
=>n+1 thuộc {+_1}
lm tiếp nhé
Sửa đề : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+....+\frac{\left(x+1\right)-x}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{1}-\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{50}\)
\(\Leftrightarrow x=50-1=49\)
Sửa đề: \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
(=) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
(=)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{98}{100}\)
(=)\(1-\frac{1}{x+1}=\frac{98}{100}\)
(=)\(\frac{1}{x+1}=1-\frac{98}{100}\)
(=)\(\frac{1}{x+1}=\frac{1}{50}\)=> \(x+1=50\)
\(x=50-1\)
\(x=49\)
T_i_c_k cho mình nha,thanks you so much!