![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : x(x+1) là tích 2 số nguyên liên tiếp nên x(x+1) chia hết cho 2
Mà 1 không chia hết cho 2 nên x(x+1)+1 không chia hết cho 2.
Vậy ...
Các phần sau cũng có 1 số hạng không chia hết cho số kia còn các số khác chia hết cho số nên cả tổng đó không chia hết cho số kia, bạn tự chứng minh nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x thuộc Z => x+1 thuộc Z
=> x+1 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
x+1 | -7 | -1 | 1 | 7 |
x | -8 | -2 | 0 | 6 |
b) c) làm tương tự
d) Ta có x+3=x+3+11
=> 11 chia hết cho x+3
=> x+3 \(\inƯ\left(11\right)=\left\{-11;-11;1;11\right\}\)
Ta có bảng
x+3 | -11 | -1 | 1 | 11 |
x | -14 | -4 | -2 | 8 |
e)f) làm tương tự
g) Ta có 2x+1=2(x-2)+5
=> 5 chia hết cho x-2
=> x-2 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng
x-2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
a, Ta có 7 chia hết cho x+1
Do đó : x+1 thuộc Ư{7}
Mà x thuộc Z
Ta có bảng:
x+1 | 1 | 7 | -1 | -7 |
x | 0 | 6 | -2 | -8 |
Chỗ này bn thêm thoả mãn điều kiện nhé
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\left(2x+5\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(x+x+1+1+3\right)⋮\left(x+1\right)\)
\(\Rightarrow3⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{1;3\right\}\)
\(\Rightarrow x\in\left\{0;2\right\}\)
\(b.\left(2x+8\right)⋮\left(2x+1\right)\)
\(\Rightarrow\left(2x+1+7\right)⋮\left(2x+1\right)\)
\(\Rightarrow7⋮\left(2x+1\right)\)
\(\Rightarrow2x+1\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{1;7\right\}\)
\(\Rightarrow x\in\left\{0;3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để \(-1:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
b) Để \(1:x+1\)là số nguyên
\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)
+ \(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)
Vậy \(x\in\left\{-2; 0\right\}\)
c) Để \(-2:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1;-2;1;2\right\}\)
d) Để \(3:x-2\)là số nguyên
\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1;1;3;5\right\}\)
e) Ta có: \(x+8=\left(x-7\right)+15\)
- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)
\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(x-7\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(x\) | \(6\) | \(8\) | \(4\) | \(10\) | \(2\) | \(12\) | \(-8\) | \(22\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)
f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)
- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)
\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)
- Ta có bảng giá trị:
\(x-5\) | \(-1\) | \(1\) | \(-19\) | \(19\) |
\(x\) | \(4\) | \(6\) | \(-14\) | \(24\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-14;4;6;24\right\}\)
g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)
- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)
\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)
- Ta có bảng giá trị:
\(x-8\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) | \(-16\) | \(16\) | \(-32\) | \(32\) |
\(x\) | \(7\) | \(9\) | \(6\) | \(10\) | \(4\) | \(12\) | \(0\) | \(16\) | \(-8\) | \(24\) | \(-24\) | \(40\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)
h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)
- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(0\) | \(2\) | \(-6\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)
- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)
\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(x\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
4x+5 chia hết cho 2x+1
mà 2x+1 chia hết cho 2x+1
suy ra 4x+5 - 2.(2x+1) chia hết cho 2x+1
suy ra 4x+5 - 4x - 2 chia hết cho 2x+1
suy ra 3 chia hết cho 2x+1
suy ra 2x+1 thuộc {1;-1;3;-3}
suy ra 2x thuộc {0; -2; 2; -4}
x thuộc {0; -1; 1; -2}
b) x2 +x - 7 chia hết cho x+1
suy ra x. ( x+1) - 7 chia hết cho x+1
mà x.(x+1) chia hết cho x+1
suy ra 7 chia hết cho x+1
x+1 thuộc {1;-1;7;-7}
x thuộc {0; -2; 6; -8}
a) Có 4x+5 chia hết cho 2x+1
--> 2(2x+1)+3 chia hết cho 2x+1
--> 3 chia hết cho 2x+1
--> 2x+1 thuộc Ư(3)={1;3;-1;-3}
Với 2x+1=1 --> x=0
Với 2x+1=3 -->x=1
Với 2x+1=(-1) -->x=(-1)
Với 2x+1=(-3) -->x=(-2)
b) Có x2+x-7 chia hết cho x+1
--> x.x+x-7 chia hết cho x+1
--> x.x+x.1-7 chia hết cho x+1
-->x(x+1)-7 chia hết cho x+1
--> 7 chia hết cho x+1
--> x+1 thuộc Ư(7)={1;7;-1;-7}
Với x+1=1 -->x=0
Với x+1=7 -->x=6
Với x+1=(-1) --> x=(-2)
Với x+1=(-7) --> x=(-8)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(n+8⋮n\)
\(\Rightarrow8⋮n\)(vì \(n⋮n\))
\(\Rightarrow n\inƯ\left(8\right)\)
\(\Rightarrow n\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
b, \(3n+5⋮n\)
\(\Rightarrow5⋮n\)(vì \(3n⋮n\))
\(\Rightarrow n\inƯ\left(5\right)\)
\(\Rightarrow n\in\left\{\pm1;\pm5\right\}\)
c, \(n+7⋮n+1\)
\(\Rightarrow\left(n+1\right)+6⋮n+1\)
\(\Rightarrow6⋮n+1\)(vì \(n+1⋮n+1\))
\(\Rightarrow n+1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow n\in\left\{-7;-4;-3;-2;0;1;2;5\right\}\)
Hok tốt nha^^