Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{996}{997}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{996}{997}\)
\(1-\frac{1}{x+1}=\frac{996}{997}\)
\(\frac{1}{x+1}=1-\frac{996}{997}\)
\(\frac{1}{x+1}=\frac{1}{997}\)
\(\Rightarrow x+1=997\)
\(x=997-1\)
\(x=996\)
\(x-\frac{2}{3}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{2}{3}\)
\(x=\frac{3}{6}+\frac{4}{6}\)
\(x=\frac{7}{6}\)
1 / 5 + x = 3 / 7 + 1 / 3
1 / 5 + x = 16 /21
x = 16 / 21 - 1 / 5
x = 59 / 105
x - 1 / 2 = 2 / 3 - 1 / 5
x - 1 / 2 = 7 / 15
x = 7 / 15 + 1 / 2
x = 29 / 30
3 / 5 * x = 2 / 7+ 1 / 4
3 / 5 * x = 15 / 28
x = 15 / 28 : 3 / 5
x = 25 / 28
7 / 8 : x = 1 / 6 * 2 / 3
7 / 8 : x = 1 / 9
x = 7 / 8 : 1 / 9
x = 63 / 8
\(x\times\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}\div\frac{1}{2}\)
\(x=\frac{1}{3}\times\frac{2}{1}\)
\(x=\frac{2}{3}\)
\(\left(\frac{3}{5}-x\right)+\frac{13}{20}=\frac{5}{6}\)
\(\frac{3}{5}-x=\frac{5}{6}-\frac{13}{20}\)
\(\frac{3}{5}-x=\frac{11}{60}\)
\(x=\frac{3}{5}-\frac{11}{60}\)
\(x=\frac{5}{12}\)
\(\left(x-\frac{1}{2}\right)\cdot\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\left(x-\frac{1}{2}\right)\cdot\frac{5}{3}=\frac{5}{4}\)
\(x-\frac{1}{2}=\frac{5}{4}:\frac{5}{3}\)
\(x-\frac{1}{2}=\frac{3}{4}\)
\(x=\frac{3}{4}+\frac{1}{2}\)
\(x=\frac{5}{4}\)
( 3/5 - x ) + 13/20 = 5/6
3/5 - x = 5/6 - 13/20
3/5 - x = 89/60
x = 3/5 - 89/60
x = 25/12
( x - 1/2 ) x 5/3 = 7/4 - 1/2
( x - 1/2 ) x 5/3 = 5/4
x - 1/2 = 5/4 : 5/3
x - 1/2 = 35/12
x = 35/12 + 1/2
x = 41/12
x(3-x)=0
Th1: x=0
Th2: 3-x=0 => x=3
Vậy x=0 và x=3
(x+2)(4x-8)=0
Th1: x+2= 0 => x=-2
Th2: 4x-8 =0 => 4x =8
x= 2
Vậy x= +- 2 (cộng trừ 2 nhé)
(x+1)+(x+2)+(x+3)+....+(x+199)=5750
199x +(1+2+3+...199) =5750
199x+ {(199+1)* [(199-1)+1] : 2} =5750
199x + 19900= 5750
199x = -14150
x= -14150/199
\(\frac{5}{3}-\frac{1}{3}:\left(1-x\cdot\frac{1}{3}\right)=\frac{7}{6}\)
=> \(\frac{1}{3}:\left(1-x\cdot\frac{1}{3}\right)=\frac{5}{3}-\frac{7}{6}\)
=> \(\frac{1}{3}:\left(1-x\cdot\frac{1}{3}\right)=\frac{1}{2}\)
=> \(\left(1-x\cdot\frac{1}{3}\right)=\frac{1}{3}:\frac{1}{2}=\frac{1}{3}\cdot2=\frac{2}{3}\)
=> \(1-\frac{x}{3}=\frac{2}{3}\)
=> \(\frac{x}{3}=1-\frac{2}{3}=\frac{1}{3}\)
=> x = 1
\(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)-\frac{1}{4}=\frac{1}{2}\)
=> \(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
=> \(x:\frac{1}{2}+\frac{3}{2}=3-\frac{3}{4}=\frac{9}{4}\)
=> \(x:\frac{1}{2}=\frac{9}{4}-\frac{3}{2}\)
=> \(x:\frac{1}{2}=\frac{3}{4}\)
=> \(x=\frac{3}{4}\cdot\frac{1}{2}=\frac{3}{8}\)
\(\frac{5}{3}-\frac{1}{3}:\left(1-x\times\frac{1}{3}\right)=\frac{7}{6}\)
\(\frac{1}{3}:\left(1-x\times\frac{1}{3}\right)=\frac{5}{3}-\frac{7}{6}\)
\(\frac{1}{3}:\left(1-x\times\frac{1}{3}\right)=\frac{1}{2}\)
\(1-x\times\frac{1}{3}=\frac{1}{3}:\frac{1}{2}\)
\(1-x\times\frac{1}{3}=\frac{2}{3}\)
\(x\times\frac{1}{3}=1-\frac{2}{3}\)
\(x\times\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{1}{3}:\frac{1}{3}\)
\(x=1\)
\(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)-\frac{1}{4}=\frac{1}{2}\)
\(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)=\frac{1}{2}+\frac{1}{4}\)
\(3-\left(x:\frac{1}{2}+\frac{3}{2}\right)=\frac{3}{4}\)
\(x:\frac{1}{2}+\frac{3}{2}=3-\frac{3}{4}\)
\(x:\frac{1}{2}+\frac{3}{2}=\frac{9}{4}\)
\(x:\frac{1}{2}=\frac{9}{4}-\frac{3}{2}\)
\(x:\frac{1}{2}=\frac{3}{4}\)
\(x=\frac{3}{4}\times\frac{1}{2}\)
\(x=\frac{3}{8}\)