Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D= 2x2 - 6x
= 2(x2 - 3x +\(\dfrac{9}{4}\)) - \(\dfrac{9}{2}\)
= 2[x2 - 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 ] - \(\dfrac{9}{2}\)
= 2 (x - \(\dfrac{3}{2}\))2 - \(\dfrac{9}{2}\)
Ta có:
2(x - \(\dfrac{3}{2}\))2 ≥ 0 ⇒ 2 (x - \(\dfrac{3}{2}\))2 - \(\dfrac{9}{2}\) ≥ -\(\dfrac{9}{2}\)
Hay D≥ -\(\dfrac{9}{2}\)
Dấu = xảy ra ⇔ (x - \(\dfrac{3}{2}\)) = 0 ⇔ x = \(^{\dfrac{3}{2}}\)
Vậy MinD = - \(\dfrac{9}{2}\) ⇔ x = \(\dfrac{3}{2}\)
Ta có: \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
\(A=\left|x-2018\right|+\left|x-2019\right|\)
\(=\left|\left(x-2018\right)+\left(2019-x\right)\right|\)
\(=\left|1\right|=1\)
Vậy \(A_{min}=1\Leftrightarrow\left(x-2018\right)\left(2019-x\right)\ge0\)
\(\Leftrightarrow2018\le x\le2019\)
ư100 = ( 1;2;5;10;20;25;50;100)
ư500 = (1;2;5;10;20;25;50;100;250;500)
ưc 100;500=(1;2;5;10;20;25;50;100)
vậy ưc nhỏ nhất của 100 và 500 là (1)