Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Tích của a và b là:36.6=216
a=6.m
b=6.n
m,n thuộc N và UCLN(m,n)=1
Ta có:a .b =216
hay 6.m.6.n=216
36(m.n)=216
m.n=216:36
m.n=6
m 1 2
n 6 3
=>a 6 12
b 36 18
Vậy ta có(a;b) hoặc(b;a) ={(6;36);(12;18)}
b)UCLN(a,b)=4500:300=15
a=15.m
b=15.n
m,n thuộc N và UCLN(m,n)=1
Ta có:a .b=4500
hay 15.m.15.n=4500
225(m.n)=4500
m.n=4500:225
m.n=20
m 1 4
n 20 5
=>a 15 60
b 300 75
Vậy ta có các cặp số(a,b) hoặc(b,a)={(15;300);(60;75)}
c)a=6.m
b=6.n
m,n thuộc N và UCLN(m,n)=1
Ta có:a +b=30
hay 6.m+6.n=30
6(m.n)=30
m.n=30:6
m.n=5
m 1
n 5
=>a 6
b 30
Vậy ta có cặp số (a,b)hoặc(b,a)={6;30}
Tick mình nha bạn ơi!Mình giải hết ra cho bạn rồi đó!
Vì BCNN (a,b) = 300 và ab = 4500
Suy ra: a.b = 300.15 = 4500
Ước chung lớn nhất ( a,b ) = 15
Vì ƯCLN (a,b) = 15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).
Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.
Mà a.b =4500 nên ta có: 15m.15n =4500
15.15.m.n =4500
152.m.n =4500
225.m.n =4500
=> m.n = 20
Suy ra: m=1 và n=20 hoặc m=4 và n=5.
Mà m+1 =n =>m=4 và n =5.
Vậy: a= 15.4= 60 ; b= 15.5= 75.
Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath
Nhớ xem và !
a, 24 và 10
b, 6 và 30
c, 6 và 36
d, <không có trường hợp nào>
e, 36 và 6
Chúc bạn học giỏi !
<Lưu ý : Bạn xem lại câu d>
Trước tiên, ta cần chứng minh 2 bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\).
Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)
Chứng minh:
Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)
Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.
Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)
\(\Leftrightarrow kl-k-l+1\ge0\)
\(\Leftrightarrow kl+1\ge k+l\)
\(\Leftrightarrow dkl+d\ge dk+dl\)
\(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)
Vậy 2 bổ đề đã được chứng minh.
a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)
Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:
\(a\in\left\{15;30;45\right\}\)
Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)
Nếu \(a=30\) thì \(b=90\) (loại)
Nếu \(a=45\) thì \(b=60\) (thỏa)
Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)
Câu b làm tương tự.
a>ƯCLN
1230=2.3.5.41
4800=26.3.52
ƯC{1230;4800}=2.3=6={1;2;3;6}
=>ƯCLN{1230;4800}=6