Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC(2n - 1; 9n + 4)
\(\Rightarrow\hept{\begin{cases}2n-1⋮d\\9n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}9\left(2n-1\right)⋮d\\2\left(9n+4\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}18n-9⋮d\\18n+8⋮d\end{cases}}}}\)
=> ( 18n - 9 ) - ( 18n + 8 ) chia hết cho d
=> 18n - 9 - 18 - 8 chia hết cho d
=> ( 18n - 18n ) - ( 9 - 8 ) chia hết cho d
=> 0 - 1 chia hết cho d
=> -1 chia hết cho d
=> d = 1 hoặc d = -1
=> ƯCLN(2n - 1; 9n + 4) = 1
Gọi UCLN của ( 2n-1;9n+4) là A
Ta có: \(2n-1⋮A\)\(\Rightarrow\)\(9\left(2n-1\right)⋮A\)\(\Leftrightarrow\)\(18n-9⋮A\)(1)
\(9n+4⋮A\)\(\Rightarrow2\left(9n+4\right)⋮A\Leftrightarrow18n+8⋮A\)(2)
\(\left(1\right)\left(2\right)\Rightarrow\left(18n+8\right)-\left(18n-9\right)⋮A\)
\(\Leftrightarrow17⋮A\)
\(\Rightarrowđpcm\)
Gọi d = ƯCLN(2n + 3; 3n + 4)
⇒ (2n + 3) ⋮ d và (3n + 4) ⋮ d
*) (2n + 3) ⋮ d
⇒ 3(2n + 3) ⋮ d
⇒ (6n + 9) ⋮ d (1)
*) (3n + 4) ⋮ d
⇒ 2(3n + 4) ⋮ d
⇒ (6n + 8) ⋮ d (2)
Từ (1) và (2) suy ra:
(6n + 9 - 6n - 8) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy ƯCLN(2n + 3; 3n + 4) = 1
Tìm n thuộc Z sao cho:
n+6 là ước số của 9n+74
Mik đang gấp lắm nhé!!! Mik sẽ tick bạn nào nhanh nhé .
n + 6 là ước của 9n + 74
=> 9n + 74 ⋮ n + 6
=> 9n + 54 + 20 ⋮ n + 6
=> 9(n + 6) + 20 ⋮ n + 6
9(n + 6) ⋮ n + 6
=> 20 ⋮ n + 6
=> n + 6 thuộc Ư(20)
=> n + 6 thuộc {-1; 1; -2; 2; -4; 4; -5; 5; -10; 10; -20; 20}
=> n thuộc {-7; -5; -8; -4; -10; -2; -11; -1; -16; 4; -26; 14}
vậy_
\(\frac{n-3}{n+2}\inℤ\Leftrightarrow n-3⋮n+2\)
=> n + 2 - 5 ⋮ n + 2
n + 2 ⋮ n + 2
=> 5 ⋮ n + 2
=> n + 2 thuộc {-1; 5; 1; -5}
=> n thuộc {-3; 3; -1; -7}
vậy_
Ta có ƯCLN ( 2n+3 ; 3n+4) suy ra 3(2n+3)-2(3n+4) chia hết cho d
suy ra (6n +9)-(6n +4) chia hết cho d
suy ra 1 chia hết cho d
Vậy d=1
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
Gọi d là ƯCLN(9n + 24; 3n + 4)
\(\Rightarrow\hept{\begin{cases}9n+24⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}9n+24⋮d\\3\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}9n+24⋮d\\9n+12⋮d\end{cases}}}\)
=> ( 9n + 24 ) - ( 9n + 12 ) chia hết cho d
=> 9n + 24 - 9n - 12 chia hết cho d
=> ( 9n - 9n ) + ( 24 - 12 ) chia hết cho d
=> 0 + 12 chia hết cho d
=> 12 chia hết cho d
=> d thuộc Ư(12) = { -12 ; -6 ; -4 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 4 ; 6 ; 12 }
mà d là số lớn nhất
=> d = 12
=> ƯCLN(9n + 24; 3n + 4) = 12
* K dám chắc *
=>