Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 \(⋮\)d ( 1 )
2n + 1 \(⋮\)d hay 2 ( 2n + 1 ) \(⋮\)d = 4n + 2 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) \(⋮\)d
hay 1 \(⋮\)d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 \(⋮\)d hay 2 ( 6n + 1 ) \(⋮\)d = 12n + 2 \(⋮\)d ( 1 )
4n + 5 \(⋮\)d hay 3 ( 4n + 5 ) \(⋮\)d = 12n + 15 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) \(⋮\)d
Hay 13 \(⋮\)d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n \(\ne\)13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
Do đó d = 1
Vậy ƯCLN ( 6n + 1 , 4n + 5 ) = 1
) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 ⋮d ( 1 )
2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d
hay 1 ⋮d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )
4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) ⋮d
Hay 13 ⋮d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
gọi m là ƯCLN (2n+3;4n+6)
=> 2n + 3 chia hết cho m
=> 2(2n+3) chia hết cho m
=> 4n+6 chia hết cho m
=> [(4n+6)-(4n+6)]chia hết cho m
còn phần sau thì bn tự lm tiếp nha
b,gọi x là ƯCLN(2n+3 và 4n +8)
=> 2n + 3 chia hết cho m
=> 2(2n+3) chia hết cho m
=> 4n+6 chia hết cho m
=> [(4n+8)-(4n+6)]chia hết cho m
=>2 chia hết cho m
còn phần sau bn tự lm típ nha
chúc bn hok tốt
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản
Gọi Ước chung lớn nhất của 2 số là m
Ta có : 4.(2n+3 ) = 8n+12
2.(4n+3) = 8n + 6
Ta có : 8n + 12 chia hết cho m
8n + 6 chia hết cho m
Suy ra : ( 8n + 12 ) - ( 8n + 6) chia hết cho m
Suy ra : 6 chia hết cho m
Vậy m thuộc Ư(6)
Suy ra : m thuộc { 1;2;3;6}
Mà m lớn nhất , suy ra m = 6
Duyệt đi , chúc bạn học giỏi
Gọi ƯCLN(4n+3,5n+2) = d(d ∈ ℕ )
⇒4n+3 ⋮d; 5n+2 ⋮d
⇒ 5.(4n+3)⋮d; 4.(5n+2)⋮d
⇒20n+15 ⋮d; 20n+8 ⋮d
⇒(20n+15-20n-8)⋮d
⇒7 ⋮d
Do đó d ∈ Ư(7)={1;7}
Mà đầu bài cho là (4n+3,5n+2) ≠ 1
⇒d=7
Vậy ƯCLN(4n+3,5n+2) = 7
Ưcln=1