Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Điều kiện: 1 - sin2x \(\ne\) 0
<=> sin2x \(\ne1\)
<=> \(x\ne\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)
TXĐ: D = R\ {\(\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)}
b. ĐKXĐ cos(4x+\(\dfrac{\pi}{3}\)) \(\ne\)0 => 4x+\(\dfrac{\pi}{3}\)= \(\dfrac{\pi}{2}\)+k\(\pi\) => x=\(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z
==> TXĐ: D= R\ { \(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z }
à tui nhầm, không phải tìm TXĐ mà là gtln, gtnn của hàm số
\(y=2\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)=2sin\left(2x-\frac{\pi}{6}\right)\)
Do \(-1\le sin\left(2x-\frac{\pi}{6}\right)\le1\Rightarrow-2\le y\le2\)
\(y_{min}=-2\) khi \(sin\left(2x-\frac{\pi}{6}\right)=-1\)
\(y_{max}=2\) khi \(sin\left(2x-\frac{\pi}{6}\right)=1\)
e/
ĐKXĐ: ...
\(\Leftrightarrow\frac{2sin4x.cos2x}{cos2x}-2cos4x=2\sqrt{2}\)
\(\Leftrightarrow2sin4x-2cos4x=2\sqrt{2}\)
\(\Leftrightarrow sin4x-cos4x=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(4x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(4x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow4x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\frac{3\pi}{16}+\frac{k\pi}{2}\)
d/
Đặt \(sin2x-cos2x=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(\Rightarrow t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.\)
ta có:\(\dfrac{\sin5x+\sin x}{\sqrt{2}\left|\cos2x\right|}=\sin2x+\cos2x\)
\(\Leftrightarrow\dfrac{2\sin3x.\cos2x}{\sqrt{2}\left|c\text{os}2x\right|}=\sin2x+\cos2x\)
\(\Leftrightarrow2\sin3x=\sin2x+\cos2x\)(1)
nhận thấy :\(a^2+b^2< c^2\)\(\Rightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}\cdot\cos2x+\dfrac{1}{2}\cdot\sin2x+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)
\(\Leftrightarrow2\cdot\dfrac{\sin\left(2x+\dfrac{\Pi}{3}+2x+\dfrac{\Pi}{6}\right)}{2}\cdot\dfrac{\cos\left(2x+\dfrac{\Pi}{3}-2x-\dfrac{\Pi}{6}\right)}{2}=\sqrt{2}\)
\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)\cdot\cos\left(\dfrac{\Pi}{6}\right)=2\sqrt{2}\)
\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)=\dfrac{4\sqrt{6}}{3}\)
hay \(x\in\varnothing\)
a) Đk: sinx \(\ne\)0<=>x\(\ne\)k\(\Pi\)
pt<=>\(\sqrt{3}\)(1-cos2x)-cosx=0
<=>\(\sqrt{3}\)[1-(2cos2x-1)]-cosx=0
<=>2\(\sqrt{3}\)-2\(\sqrt{3}\)cos2x-cosx=0
<=>\(\left\{{}\begin{matrix}cosx=\dfrac{\sqrt{3}}{2}\\cosx=-\dfrac{2\sqrt{3}}{3}< -1\left(loai\right)\end{matrix}\right.\)
tới đây bạn tự giải cho quen, chứ chép thì thành ra không hiểu gì thì khổ
b)pt<=>2sin2x+2sin2x=1
<=>2sin2x+2sin2x=sin2x+cos2x
<=>4sinx.cosx+sin2x-cos2x=0
Tới đây là dạng của pt đẳng cấp bậc 2, ta thấy cosx=0 không phải là nghiệm của pt nên ta chia cả hai vế của pt cho cos2x:
pt trở thành:
4tanx+tan2x-1=0
<=>\(\left[{}\begin{matrix}tanx=-2+\sqrt{2}\\tanx=-2-\sqrt{5}\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=arctan\left(-2+\sqrt{5}\right)+k\Pi\\x=arctan\left(-2-\sqrt{5}\right)+k\Pi\end{matrix}\right.\)(k thuộc Z)
Chú ý: arctan tương ứng ''SHIFT tan'' (khi thử nghiệm trong máy tính)
c)Đk: cosx\(\ne\)0<=>x\(\ne\)\(\dfrac{\Pi}{2}\)+kpi
pt<=>cos2x+\(\sqrt{3}\)sin2x=1
<=>1-sin2x+\(\sqrt{3}\)sin2x-1=0
<=>(\(\sqrt{3}\)-1)sin2x=0
<=>sinx=0<=>x=k\(\Pi\)(k thuộc Z)
d)
pt<=>\(\sqrt{3}\)sin7x-cos7x=\(\sqrt{2}\)
Khúc này bạn coi SGK trang 35 người ta giả thích rõ ràng rồi
pt<=>\(\dfrac{\sqrt{3}}{2}\)sin7x-\(\dfrac{1}{2}\)cos7x=\(\dfrac{\sqrt{2}}{2}\)
<=>sin(7x-\(\dfrac{\Pi}{3}\))=\(\dfrac{\sqrt{2}}{2}\)
<=>sin(7x-\(\dfrac{\Pi}{3}\))=sin\(\dfrac{\Pi}{4}\)
Tới đây bạn tự giải nhé, giải ra nghiệm rồi kiểm tra xem nghiệm nào thuộc khoảng ( đề cho) rồi kết luận
Câu d) mình nhầm nhé
<=>sin(7x-\(\dfrac{\Pi}{6}\))=\(\dfrac{\sqrt{2}}{2}\) mới đúng sorry