\(\dfrac{cos2x}{1-sin2x}\)

b. y= cosx- tan(4x+

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

a/ Điều kiện: 1 - sin2x \(\ne\) 0
<=> sin2x \(\ne1\)
<=> \(x\ne\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)
TXĐ: D = R\ {\(\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)}

6 tháng 7 2017

b. ĐKXĐ cos(4x+\(\dfrac{\pi}{3}\)) \(\ne\)0 => 4x+\(\dfrac{\pi}{3}\)= \(\dfrac{\pi}{2}\)+k\(\pi\) => x=\(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z

==> TXĐ: D= R\ { \(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z }

14 tháng 8 2017

a) Đk: sinx \(\ne\)0<=>x\(\ne\)k\(\Pi\)

pt<=>\(\sqrt{3}\)(1-cos2x)-cosx=0

<=>\(\sqrt{3}\)[1-(2cos2x-1)]-cosx=0

<=>2\(\sqrt{3}\)-2\(\sqrt{3}\)cos2x-cosx=0

<=>\(\left\{{}\begin{matrix}cosx=\dfrac{\sqrt{3}}{2}\\cosx=-\dfrac{2\sqrt{3}}{3}< -1\left(loai\right)\end{matrix}\right.\)

tới đây bạn tự giải cho quen, chứ chép thì thành ra không hiểu gì thì khổ

b)pt<=>2sin2x+2sin2x=1

<=>2sin2x+2sin2x=sin2x+cos2x

<=>4sinx.cosx+sin2x-cos2x=0

Tới đây là dạng của pt đẳng cấp bậc 2, ta thấy cosx=0 không phải là nghiệm của pt nên ta chia cả hai vế của pt cho cos2x:

pt trở thành:

4tanx+tan2x-1=0

<=>\(\left[{}\begin{matrix}tanx=-2+\sqrt{2}\\tanx=-2-\sqrt{5}\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=arctan\left(-2+\sqrt{5}\right)+k\Pi\\x=arctan\left(-2-\sqrt{5}\right)+k\Pi\end{matrix}\right.\)(k thuộc Z)

Chú ý: arctan tương ứng ''SHIFT tan'' (khi thử nghiệm trong máy tính)

c)Đk: cosx\(\ne\)0<=>x\(\ne\)\(\dfrac{\Pi}{2}\)+kpi

pt<=>cos2x+\(\sqrt{3}\)sin2x=1

<=>1-sin2x+\(\sqrt{3}\)sin2x-1=0

<=>(\(\sqrt{3}\)-1)sin2x=0

<=>sinx=0<=>x=k\(\Pi\)(k thuộc Z)

d)

pt<=>\(\sqrt{3}\)sin7x-cos7x=\(\sqrt{2}\)

Khúc này bạn coi SGK trang 35 người ta giả thích rõ ràng rồi

pt<=>\(\dfrac{\sqrt{3}}{2}\)sin7x-\(\dfrac{1}{2}\)cos7x=\(\dfrac{\sqrt{2}}{2}\)

<=>sin(7x-\(\dfrac{\Pi}{3}\))=\(\dfrac{\sqrt{2}}{2}\)

<=>sin(7x-\(\dfrac{\Pi}{3}\))=sin\(\dfrac{\Pi}{4}\)

Tới đây bạn tự giải nhé, giải ra nghiệm rồi kiểm tra xem nghiệm nào thuộc khoảng ( đề cho) rồi kết luận

14 tháng 8 2017

Câu d) mình nhầm nhé

<=>sin(7x-\(\dfrac{\Pi}{6}\))=\(\dfrac{\sqrt{2}}{2}\) mới đúng sorry

17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

6 tháng 9 2018

a) để hàm số : \(y=\dfrac{1-cosx}{sin2x}\) có nghĩa \(\Leftrightarrow sin2x\ne0\Leftrightarrow2x\ne k\pi\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\left(k\in Z\right)\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{k\pi}{2}\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{tanx}{cosx+1}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi;\pi+k2\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{k\pi;\dfrac{\pi}{2}+k\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\sqrt{\dfrac{1}{1-sinx}}\) có nghĩa \(\Leftrightarrow1-sinx>0\)

ta có : \(sinx\le1\forall x\Rightarrow1-sinx\ge0\forall x\) \(\Rightarrow\) hàm số xác định khi \(1-sinx\ne0\) là đủ

\(\Leftrightarrow sinx\ne1\Leftrightarrow x\ne\dfrac{\pi}{2}+k2\pi\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\)

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

31 tháng 3 2017

Bài 2. a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R {kπ, (k ∈ Z)}.

b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R {k2π, (k ∈ Z)}.

c) Hàm số đã cho không xác định khi và chỉ khi .

Hàm số đã cho có tập xác định là R {}.

d) Hàm số đã cho không xác định khi và chỉ khi

Hàm số đã cho có tập xác định là R {}.