K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Bước 1: Sắp xếp mẫu số liệu trên theo thứ tự không giảm

11 48 62 81 93 99 127

Bước 2: Trung vị của mẫu số liệu là: 81

Bước 3: Trung vị của dãy số 11 48 62 là: 48

Bước 4: Trung vị của dãy số 93 99 127 là: 99

Bước 5: Vậy \({Q_1} = 48,{Q_2} = 48,{Q_3} = 99\)

*) Biểu diễn tứ phân vị trên trục số:

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)

+) Số trung bình: \(\overline x  = \frac{{23.6 + 25.8 + 28.10 + 31.6 + 33.4 + 37.3}}{{6 + 8 + 10 + 6 + 4 + 3}} \approx 28,3\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,

\(\underbrace {23,...,23}_6,\underbrace {25,...25}_8,\underbrace {28,...,28}_{10},\underbrace {31,...,31}_6,\underbrace {33,...,33}_4,37,37,37\)

Bước 2: \(n = 6 + 8 + 10 + 6 + 4 + 3 = 37\), là số lẻ \( \Rightarrow {Q_2} = {X_{19}} = 28\)

\({Q_1}\) là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\): \(\underbrace {23,...,23}_6,\underbrace {25,...25}_8,\underbrace {28,...,28}_4\)

Do đó \({Q_1} = \frac{1}{2}({X_9} + {X_{10}}) = \frac{1}{2}(25 + 25) = 25\)

\({Q_3}\) là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\)

\(\underbrace {28,...,28}_5,\underbrace {31,...,31}_6,\underbrace {33,...,33}_4,37,37,37\)

Do đó \({Q_3} = \frac{1}{2}({X_9} + {X_{10}}) = \frac{1}{2}(31 + 31) = 31\)

+) Mốt \({M_o} = 28\)

b) Giả sử cỡ mẫu \(n = 10\)

Khi đó ta có bảng số liệu như sau:

Giá trị

0

2

4

5

Tần số

6

2

1

1

+) Số trung bình: \(\overline x  = \frac{{0.0,6 + 2.0,2 + 4.0,1 + 5.0,1}}{{0,6 + 0,2 + 0,1 + 0,1}} = 1,3\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm \(0,0,0,0,0,0,2,2,4,5\)

Bước 2: \(n = 10\), là số chẵn \( \Rightarrow {Q_2} = \frac{1}{2}(0 + 0) = 0\)

\({Q_1}\) là trung vị của nửa số liệu: \(0,0,0,0,0\). Do đó \({Q_1} = 0\)

\({Q_3}\) là trung vị của nửa số liệu: \(0,2,2,4,5\). Do đó \({Q_3} = 2\)

+) Mốt \({M_o} = 0\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Ví dụ, ta có bảng đo chiều cao của các bạn trong tổ như sau:

160

162

164

165

172

174

177

178

180

 a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:

160   162     164      165      172      174      177      178      180

Số trung bình cộng của mẫu số liệu trên là:

\(\overline x  = \frac{{160\;\; + 162\;\; + 164\;\;\; + \;\;165\;\; + \;172\;\; + \;174\;\; + \;177\; + \;\;178\; + \;180}}{9} = \frac{{1532}}{9}\)

Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 9 số liệu ( lẻ ) nên trung vị \({Q_2} = 172\)

 Tứ phân vị của mẫu số liệu trên là:

-  Trung vị của dãy 160   162  164   165 là: \({Q_1} = 163\)

- Trung vị của dãy  174   177  178   180 là: \({Q_3} = 177,5\)

- Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 163\), \({Q_2} = 172\), \({Q_3} = 177,5\)

b) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 180 - 160 = 20\)

Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 177,5 - 163 = 14,5\)

c) Phương sai của mẫu số liệu trên là:

\({s^2} = \frac{{\left[ {{{\left( {160 - \overline x } \right)}^2} + {{\left( {162 - \overline x } \right)}^2} + ... + {{\left( {180 - \overline x } \right)}^2}} \right]}}{9} \approx 50,84\)

Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}}  \approx 7,13\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Sắp xếp lại:

7  9  9  10  10  10  11  12  12  14

Trung vị \({Q_2} = \dfrac{{10 + 10}}{2} = 10\)

Nửa trái \({Q_2}\): 7  9  9  10  10 

\({Q_1} = 9\)

Nửa phải: 10  11  12  12  14

\({Q_3} = 12\)

Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1} = 12 - 9 = 3\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Xét mẫu số liệu đã sắp xếp là: \(2;2;5;7;10;10;13;15;19\)

Khoảng biến thiên của mẫu số liệu là: \(R = 19 - 2 = 17.\)

Cỡ mẫu là \(n = 9\) là số lẻ nên giá trị tứ phân vị thứ hai là: \({Q_2} = 10.\)

Tứ phân vị thứ nhất là trung vị của mẫu: \(2;2;5;7\). Do đó \({Q_1} = 3,5\)

Tứ phân vị thứ ba là trung vị của mẫu: \(10;13;15;19\). Do đó \({Q_3} = 14\)

Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 14 - 3,5 = 10,5\)

b) Xét mẫu số liệu đã sắp xếp là: \(1;2;5;5;9;10;10;15;15;19\)

Khoảng biến thiên của mẫu số liệu là: \(R = 19 - 1 = 18.\)

Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 9,5.\)

Tứ phân vị thứ nhất là trung vị của mẫu: \(1;2;5;5;9\). Do đó \({Q_1} = 5.\)

Tứ phân vị thứ ba là trung vị của mẫu: \(10;10;15;15;19\). Do đó \({Q_3} = 15\)

Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 15 - 5 = 10\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Dựa vào biểu đồ, ta có mẫu số liệu là:

5767 5757 5737 5727 5747 5747 5722

b) Khoảng biến thiên của mẫu số liệu đó là: \(R = {x_{\max }} - {x_{\min }} = 5767 - 5722 = 45\)

c) +) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta có:

5722 5727 5737 5747 5747 5757 5767

+) Các tứ phân vị của mẫu số liệu là:

Trung vị của mẫu số liệu: \({Q_2}\) = 5747.

Trung vị của dãy 5722 5727 5737 là: \({Q_1}\) = 5727.

Trung vị của dãy 5747 5757 5767 là: \({Q_3}\) = 5757.

+) Khoảng tứ phân vị của mẫu số liệu là: \({\Delta _Q} ={Q_3} - {Q_1}\) = 5757- 5727= 30.

d) +) Giá vàng trung bình trong 7 ngày đầu tiên của tháng 6 năm 2021 là: \(\overline x  = \frac{{5722{\rm{  +  }}5727{\rm{  +  }}5737{\rm{  +  }}5747{\rm{  +  }}5747{\rm{   +  }}5757{\rm{  +  }}5767}}{7} = 5743,43\) ( nghìn đồng/ chỉ)

+) Phương sai của mẫu số liệu là: \({s^2} = \frac{{\left[ {{{\left( {5722 - \overline x } \right)}^2} + {{\left( {5727 - \overline x } \right)}^2} + ... + {{\left( {5767 - \overline x } \right)}^2}} \right]}}{7} \approx 219,39\)

+) Độ lệch chuẩn của của mẫu số liệu là: \(s = \sqrt {{s^2}} = \sqrt {219,39}  \approx 14,81\)( nghìn đồng/ chỉ)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Dựa vào biểu đồ, ta có mẫu số liệu là:

                                               5,25  5,42  5,98  6,68  6,21  6,81  7,08  7,02

b)

+) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta có:

                                                  5,25  5,42  5,98  6,21  6,68  6,81  7,02  7,08

 +) Khoảng biến thiên của mẫu số liệu đó là: \(R = {x_{\max }} - {x_{\min }} = 7,08 - 5,25 = 1,83\)

c)

+) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta có:

                                       5,25  5,42  5,98  6,21  6,68  6,81 7,02  7,08

+) Các tứ phân vị của mẫu số liệu là: \({Q_1} = 5,7,{Q_2} = 6,445,{Q_3} = 6,915\)

+) Khoảng tứ phân vị của mẫu số liệu là: \({Q_3} - {Q_1} = 1,215\)

d)

+) Tốc độ tăng trưởng GDP  trung bình của Việt Nam giai đoạn 2012 – 2019 là:\(\overline x  = \frac{{5,25{\rm{  +  }}5,42{\rm{  +  }}5,98{\rm{  +  }}6,21{\rm{  +  }}6,68\; + 6,81{\rm{  +  }}7,02{\rm{  +  }}7,08}}{8} = 6,30625\) (%)

 +) Phương sai của mẫu số liệu là: \({s^2} = \frac{{\left[ {{{\left( {5,25 - \overline x } \right)}^2} + {{\left( {5,42 - \overline x } \right)}^2} + ... + {{\left( {7,08 - \overline x } \right)}^2}} \right]}}{8} \approx 0,44\)

+) Độ lệch chuẩn của của mẫu số liệu là: \(s = \sqrt {{s^2}}  \approx 0,66\)(%)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(23;{\rm{ }}41;{\rm{ }}71;{\rm{ }}29;{\rm{ }}48;{\rm{ }}45;{\rm{ }}72;{\rm{ }}41\).

+) Số trung bình: \(\overline x  = \frac{{23 + 41 + 71 + 29 + 48 + 45 + 72 + 41}}{8} = 46,25\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \(23;{\rm{ }}29;{\rm{ }}41;{\rm{  }}41;\;{\rm{ }}45;{\rm{ }}48;\;71;72\)

Bước 2: \(n = 8\), là số chẵn nên \({Q_2} = {M_e} = \frac{1}{2}(41 + 45) = 43\)

\({Q_1}\) là trung vị của nửa số liệu \(23;{\rm{ }}29;{\rm{ }}41;{\rm{ }}41\). Do đó \({Q_2} = \frac{1}{2}(29 + 41) = 35\)

\({Q_3}\) là trung vị của nửa số liệu \(45;{\rm{ }}48;\;71;72\). Do đó \({Q_3} = \frac{1}{2}(48 + 71) = 59,5\)

+) Chỉ có giá trị 41 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.

Do đó mốt \({M_o} = 41\)

b) \(12;{\rm{ }}32;{\rm{ }}93;{\rm{ }}78;{\rm{ }}24;{\rm{ }}12;{\rm{ }}54;{\rm{ }}66;{\rm{ }}78\).

+) Số trung bình: \(\overline x  = \frac{{12 + 32 + 93 + 78 + 24 + 12 + 54 + 66 + 78}}{9} \approx 49,89\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \(12;{\rm{ }}12;{\rm{ }}24;{\rm{ }}32;{\rm{ }}54;{\rm{ }}66;{\rm{ }}78;{\rm{ }}78;\;93\)

Bước 2: \(n = 9\), là số lẻ nên \({Q_2} = {M_e} = 54\)

\({Q_1}\) là trung vị của nửa số liệu \(12;{\rm{ }}12;{\rm{ }}24;{\rm{ }}32\). Do đó \({Q_2} = \frac{1}{2}(12 + 24) = 18\)

\({Q_3}\) là trung vị của nửa số liệu \(66;{\rm{ }}78;{\rm{ }}78;\;93\). Do đó \({Q_3} = \frac{1}{2}(78 + 78) = 78\)

+) Giá trị 12 và giá trị 78 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.

Do đó mốt \({M_o} = 12,{M_o} = 78.\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có n=2+4+6+12+8+3=35, lẻ.

Trung vị là học sinh thứ 18

Ta thấy 2+4+6<18<2+4+6+12

=> \({Q_2} = 3\)

Ta tìm \({Q_1}\) là trung vị của nửa số liệu bên trái \({Q_2}\)(không bao gồm \({Q_2}\))

Nửa số liệu bên trái \({Q_2}\) có 17 học sinh nên trung vị là học sinh thứ 9:

Ta thấy 2+4<9<2+4+6

=>\({Q_1} = 2\)

Ta tìm \({Q_3}\) là trung vị của nửa số liệu bên phải \({Q_2}\)(không bao gồm \({Q_2}\))

Nửa số liệu bên phải \({Q_2}\) có 17 học sinh nên trung vị là học sinh thứ 9 trong 17 học sinh và là học sinh thứ 9+18=27 trong 35 học sinh.

Ta thấy 2+4+6+12<27<2+4+6+12+8

=>\({Q_3} = 4\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là

\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)

b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:

2 5 6 7 8 9 10 11 12 14 16

+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)