Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đa thức \(f\left(x\right)-2022\) có nghiệm nguyên \(x=a\)
\(\Rightarrow f\left(x\right)-2022=\left(x-a\right).g\left(x\right)\) với \(g\left(x\right)\) là đa thức nhận giá trị nguyên khi x nguyên
\(\Rightarrow f\left(x\right)=\left(x-a\right).g\left(x\right)+2022\) (1)
Lại có với a nguyên thì \(\left(2020-a\right)-\left(2019-a\right)=1\) lẻ nên 2020-a và 2019-a luôn khác tính chẵn lẻ
\(\Rightarrow\left(2019-a\right)\left(2020-a\right)\) luôn chẵn
Lần lượt thay \(x=2020\) và \(x=2019\) vào (1) ta được:
\(f\left(2019\right)=\left(2019-a\right).g\left(2019\right)+2022\)
\(f\left(2020\right)=\left(2020-a\right).g\left(2020\right)+2022\)
Nhân vế với vế:
\(f\left(2019\right).f\left(2020\right)=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
\(\Leftrightarrow2021=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
Do \(\left(2019-a\right)\left(2020-a\right)g\left(2019\right).g\left(2020\right)\) chẵn \(\Rightarrow\) vế phải chẵn
Mà vế trái lẻ \(\Rightarrow\) vô lý
Vậy điều giả sử là sai hay đa thức đã cho không có nghiệm nguyên
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
Bài 1:
\(a,=\left(2021-2022\right)^2=1\\ b,=3y-xy-y^2+3x-3y+xy-y^2=3x-2y^2\)
Bài 2:
\(a,\Leftrightarrow x\left(x-2021\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2021\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(x^2-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\end{matrix}\right.\)
Bài 4:
\(M=\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)+2022\\ M=\left(2x-1\right)^2+\left(y+3\right)^2+2022\ge2022\\ M_{min}=2022\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
a) Dữ liệu thuộc loại số liệu liên tục, nên dùng biểu đồ đoạn thẳng để biểu diễn
b) Dữ liệu thuộc loại số liệu rời rạc, nên dùng biểu đồ cột để biều diễn
Bài 1:
Ta có: \(A=2022-x^2-10y^2-6xy+4y\)
\(=-\left(-2022+x^2+10y^2+6xy-4y\right)\)
\(=-\left(x^2+6xy+9y^2+y^2-4y+4-2026\right)\)
\(=-\left[\left(x^2+6xy+9y^2\right)+\left(y^2-4y+4\right)-2026\right]\)
\(=-\left(x+3y\right)^2-\left(y-2\right)^2+2026\)
\(=-\left[\left(x+3y\right)^2+\left(y-2\right)^2\right]+2026\)
Ta có: \(\left(x+3y\right)^2\ge0\forall x,y\)
\(\left(y-2\right)^2\ge0\forall y\)
Do đó: \(\left(x+3y\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Leftrightarrow-\left[\left(x+3y\right)^2+\left(y-2\right)^2\right]\le0\forall x,y\)
\(\Leftrightarrow-\left[\left(x+3y\right)^2+\left(y-2\right)^2\right]+2026\le2026\forall x,y\)
Dấu '=' xảy ra khi:
\(\left\{{}\begin{matrix}x+3y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\cdot2=0\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(A=2022-x^2-10y^2-6xy+4y\) là 2026 khi x=-6 và y=2
Ta có \(15^2=12^2+9^2\) nên tam giác đã cho là tam giác vuông
Vậy diện tích của tam giác này là \(\dfrac{1}{2}.12.9=54\) (đơn vị dt)
Ta có:
15² = 12² + 9² = 225
Tam giác đã cho là tam giác vuông với hai cạnh góc vuông có độ dài lần lượt là: 9 và 12
Diện tích tam giác:
S = 9 . 12 : 2 = 54 (đơn vị diện tích)
Số trung bình cộng là :
[3+(-2022)]:2=-1009,5