Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các mẫu các số hạng là tích của 2 số cách nhau 5 đơn vị (6 = 1.6 ; 66 = 6.11 ; 176 = 11.16 ; 336 = 16.21;...).
Cho dãy gồm các thừa số I của các tích bên : 1 ; 6 ; 11 ; 16 ; ...Số hạng thứ 100 của dãy này là : 1 + 5(100 - 1) = 496
Vậy tổng của 100 số hạng đầu tiên của dãy đã cho là :
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{491.496}+\frac{1}{496.501}\)\(=\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+..+\frac{5}{491.496}+\frac{5}{496.501}\right):5\)
\(=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{491}-\frac{1}{496}+\frac{1}{496}-\frac{1}{501}\right):5\)
\(=\left(1-\frac{1}{501}\right):5=\frac{500}{501}:5=\frac{100}{501}\)
Cần phải CM: \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{198}-\frac{1}{200}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{200}\)
\(\Rightarrow A=\frac{99}{200}\)
\(\Rightarrow\frac{1}{2}A=\frac{99}{200}\)
\(\Rightarrow A=\frac{99}{400}\)
Có: \(\frac{1}{4}=\frac{100}{400}\)
Lại có: \(\frac{99}{400}< \frac{100}{400}\)
Vậy A < 1/4 (đpcm)
Dự vào thừa số thứ nhất ở mẫu , ta xác định được thừa số thứ nhất ở mẫu của số hạng thứ 100 là :
\(2+2\left(100-1\right)=200\)
Tức là chứng minh :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)
Ta có :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)
\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)
Vậy
Dự vào thừa số thứ nhất ở mẫu, ta xác định thừa số thứ nhất ở mẫu của số hạng thứ 100 là :
\(2+2\left(100-1\right)=200\)
Tức là chứng minh :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)
Ta có :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)
\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)
Vậy ...
Quy luật:
6 = 1.6
66 = 6.11
176 = 11.16
336 = 16.21
...
1/(1.6) + 1/(6.11) + 1/(11.16) + … + 1/[(5n-4)(5n+1)]
=(1/1 – 1/6)/5 + (1/6 – 1/11)/5 + (1/11 – 1/16)/5 +…+ [1/(5n-4) – 1/(5n+1)]/5
=[1/1 – 1/6 + 1/6 – 1/11 + 1/11 – 1/16 + … + 1/(5n-4) – 1/(5n+1)]/5
=[1 – 1/(5n+1)]/5
Tổng 100 số đầu =[1 – 1/(5.100+1)]/5 = 100/501
1/1.6 + 1/6.11+ 1/11.16+ ....
số thứ 100 có dạng 1/(496.501)
do đó tổng trên bằng 1/5( 1/1- 1/501) = 100/ 501
hc tốt
Ta có: 96 số hạng đầu tiên của dãy
\(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{98}\)
\(\Rightarrow\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{99}{98}\)
=> Biểu thức = ?? ( tự rút gọn)