\(y=-\frac{x}{2}+3\) và \(y=3x\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Pt hoành độ: 

\(\frac{-x}{2}+3=3x\Leftrightarrow-x+6=6x\Leftrightarrow-x+6-6x=0\) 

Giải ra thì \(x=\frac{6}{7}\) . Thế vào lại y = 3x => \(y=\frac{18}{7}\) 

Vậy toạ độ giao điểm của 2 đường thẳng trên là (x;y)= (6/7 ; 18/7)

26 tháng 2 2020

Hoành độ giao điểm là nghiệm của phương trình

\(\frac{-x}{2}+3=3x\)

-x+6 = 6x

6x + x =6

7x=6

x=6/7

y=3.6/7=18/7

Vậy A(6/7; 18/7)

vt pt hoành độ giao điểm rùi giải pt bậc hai thôi bạn

2 tháng 10 2021

a) Vẽ tương đối (d1), (d2)    

O y x 6 -4 d1 -1 -3 d2

b) Phương trình hoành độ giao điểm của (d1) và (d2):

\(\frac{3}{2}\)\(x+6\)\(=\) \(-3x-3\)

\(\Leftrightarrow\)\(\frac{9}{2}\)\(x=\)\(-9\)

\(\Leftrightarrow\)\(x=\)\(-2\)

\(\Rightarrow\)\(y=3\)

Vậy giao điểm của (d1) và (d2) là \(\left(-2;3\right)\)

c) Gọi phương trình đường thẳng cần tìm là (d): y = ax + b 

(d) // (d1) => (d):\(\frac{3}{2}\) \(x+b\)

A \(\in\)(d2) => A \((\)\(\frac{-4}{3}\)\(;1\)\()\)

Thay tọa độ A vào đường thẳng (d) ta có :

1 = \(\frac{3}{2}\) .\(\frac{-4}{3}\)+ b

\(\Leftrightarrow\)b = 3

Vậy (d): y =\(\frac{3}{2}\) \(x+3\)

:3

17 tháng 9 2019

1.

Gọi A là tọa độ giao điểm của (d1) và (d2)

Xét phương trình hoành độ giao điểm của d1 và d2 

\(x+4=\frac{-1}{2}x+\frac{7}{4}\)

\(\Leftrightarrow x+4=\frac{-2x+7}{4}\)

\(\Leftrightarrow4x+16=-2x+7\)

\(\Leftrightarrow6x=-9\)

\(\Leftrightarrow x=-\frac{3}{2}\)

Thay x = -3/2 vào ( d1 ) ta được:

y = -3/2 + 4 = 5/2

Vậy tọa độ giao điểm của 2 đường thẳng là   A (-3/2 ; 5/2 )

2.

a)

x y=3/4x-3 0 -3 0 4

0 y x -3 4 y=3/4x-3 B C H

b) Áp dụng hệ thức lượng vào tam giác OBC vuông tại O

\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{4^2}+\frac{1}{\left(-3\right)^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{25}{144}\)

\(\Leftrightarrow OH^2=\frac{144}{25}\)

\(\Leftrightarrow OH=\frac{12}{5}=2,4\)

Vậy khoảng cách từ gốc tọa độ đến đường thẳng (D) là 2,4 

Học tốt!!! 

NV
16 tháng 9 2019

Phương trình hoành độ giao điểm:

\(-\frac{x^2}{2}=3x+4\) \(\Leftrightarrow x^2+6x+8=0\Rightarrow\left[{}\begin{matrix}x=-2\Rightarrow y=-2\\x=-4\Rightarrow y=-8\end{matrix}\right.\)

\(\Rightarrow A\left(-2;-2\right);B\left(-4;-8\right)\)

\(AB=\sqrt{2^2+6^2}=2\sqrt{10}\)