Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vt pt hoành độ giao điểm rùi giải pt bậc hai thôi bạn

a) Vẽ tương đối (d1), (d2)
O y x 6 -4 d1 -1 -3 d2
b) Phương trình hoành độ giao điểm của (d1) và (d2):
\(\frac{3}{2}\)\(x+6\)\(=\) \(-3x-3\)
\(\Leftrightarrow\)\(\frac{9}{2}\)\(x=\)\(-9\)
\(\Leftrightarrow\)\(x=\)\(-2\)
\(\Rightarrow\)\(y=3\)
Vậy giao điểm của (d1) và (d2) là \(\left(-2;3\right)\)
c) Gọi phương trình đường thẳng cần tìm là (d): y = ax + b
(d) // (d1) => (d):\(\frac{3}{2}\) \(x+b\)
A \(\in\)(d2) => A \((\)\(\frac{-4}{3}\)\(;1\)\()\)
Thay tọa độ A vào đường thẳng (d) ta có :
1 = \(\frac{3}{2}\) .\(\frac{-4}{3}\)+ b
\(\Leftrightarrow\)b = 3
Vậy (d): y =\(\frac{3}{2}\) \(x+3\)
:3

1.
Gọi A là tọa độ giao điểm của (d1) và (d2)
Xét phương trình hoành độ giao điểm của d1 và d2
\(x+4=\frac{-1}{2}x+\frac{7}{4}\)
\(\Leftrightarrow x+4=\frac{-2x+7}{4}\)
\(\Leftrightarrow4x+16=-2x+7\)
\(\Leftrightarrow6x=-9\)
\(\Leftrightarrow x=-\frac{3}{2}\)
Thay x = -3/2 vào ( d1 ) ta được:
y = -3/2 + 4 = 5/2
Vậy tọa độ giao điểm của 2 đường thẳng là A (-3/2 ; 5/2 )
2.
a)
x y=3/4x-3 0 -3 0 4
0 y x -3 4 y=3/4x-3 B C H
b) Áp dụng hệ thức lượng vào tam giác OBC vuông tại O
\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{4^2}+\frac{1}{\left(-3\right)^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{25}{144}\)
\(\Leftrightarrow OH^2=\frac{144}{25}\)
\(\Leftrightarrow OH=\frac{12}{5}=2,4\)
Vậy khoảng cách từ gốc tọa độ đến đường thẳng (D) là 2,4
Học tốt!!!

Phương trình hoành độ giao điểm:
\(-\frac{x^2}{2}=3x+4\) \(\Leftrightarrow x^2+6x+8=0\Rightarrow\left[{}\begin{matrix}x=-2\Rightarrow y=-2\\x=-4\Rightarrow y=-8\end{matrix}\right.\)
\(\Rightarrow A\left(-2;-2\right);B\left(-4;-8\right)\)
\(AB=\sqrt{2^2+6^2}=2\sqrt{10}\)
Pt hoành độ:
\(\frac{-x}{2}+3=3x\Leftrightarrow-x+6=6x\Leftrightarrow-x+6-6x=0\)
Giải ra thì \(x=\frac{6}{7}\) . Thế vào lại y = 3x => \(y=\frac{18}{7}\)
Vậy toạ độ giao điểm của 2 đường thẳng trên là (x;y)= (6/7 ; 18/7)
Hoành độ giao điểm là nghiệm của phương trình
\(\frac{-x}{2}+3=3x\)
-x+6 = 6x
6x + x =6
7x=6
x=6/7
y=3.6/7=18/7
Vậy A(6/7; 18/7)