\(\frac{-x^2}{2}\)và đường thẳng y=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2019

Phương trình hoành độ giao điểm:

\(-\frac{x^2}{2}=3x+4\) \(\Leftrightarrow x^2+6x+8=0\Rightarrow\left[{}\begin{matrix}x=-2\Rightarrow y=-2\\x=-4\Rightarrow y=-8\end{matrix}\right.\)

\(\Rightarrow A\left(-2;-2\right);B\left(-4;-8\right)\)

\(AB=\sqrt{2^2+6^2}=2\sqrt{10}\)

26 tháng 2 2020

Pt hoành độ: 

\(\frac{-x}{2}+3=3x\Leftrightarrow-x+6=6x\Leftrightarrow-x+6-6x=0\) 

Giải ra thì \(x=\frac{6}{7}\) . Thế vào lại y = 3x => \(y=\frac{18}{7}\) 

Vậy toạ độ giao điểm của 2 đường thẳng trên là (x;y)= (6/7 ; 18/7)

26 tháng 2 2020

Hoành độ giao điểm là nghiệm của phương trình

\(\frac{-x}{2}+3=3x\)

-x+6 = 6x

6x + x =6

7x=6

x=6/7

y=3.6/7=18/7

Vậy A(6/7; 18/7)

13 tháng 3 2022

a)Hoành độ giao điểm của (P)và (d) là:

        \(\frac{1}{2}x^2=x+4\)

\(\Leftrightarrow x^2=2x+8\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)

Thay \(x=-2\)vào (d) ta được:

     \(y=-2+4=2\)

Thay \(x=4\)vào (d)ta được:

    \(y=4+4=8\)

Vậy \(A\left(-2;2\right),B\left(4;8\right)\)hoặc \(A\left(4;8\right),B\left(-2;2\right)\)

b)Mk ko bt làm

23 tháng 4 2017

a) * Vẽ đồ thị hàm số y = 0,5x + 2 (1)

Cho x = 0, tính được y = 2 => D(0; 2) thuộc đồ thị.

Cho y = 0, 0 = 0,5.x + 2 => x = -4 => A(-4; 0) thuộc đồ thị. Đường thẳng vẽ qua A, D là đồ thị của (1).

*Vẽ đồ thị hàm số y = 5 – 2x (2)

-Cho x = 0 tính được y = 5 E(0; 5) thuộc đồ thị

-Cho y = 0, 0 = 5 – 2x => x = 2,5 => B(2,5; 0) thuộc đồ thị. Đường thẳng vẽ qua B, E là đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

vt pt hoành độ giao điểm rùi giải pt bậc hai thôi bạn

22 tháng 7 2016

a/ Tọa độ giao điểm của (P) và (d) là:

\(\frac{x^2}{4}=-\frac{x}{2}+2\Rightarrow x^2=-2x+8\Rightarrow x^2+2x-8=0\Rightarrow\orbr{\begin{cases}x=-4\Rightarrow y=4\\x=2\Rightarrow y=1\end{cases}}\)

                                       Vậy có 2 giao điểm \(\orbr{\begin{cases}A\left(-4;4\right)\\A\left(2;1\right)\end{cases}}\)

22 tháng 7 2016

Giúp mình câu b luôn đi bạn :))

2 tháng 10 2021

a) Vẽ tương đối (d1), (d2)    

O y x 6 -4 d1 -1 -3 d2

b) Phương trình hoành độ giao điểm của (d1) và (d2):

\(\frac{3}{2}\)\(x+6\)\(=\) \(-3x-3\)

\(\Leftrightarrow\)\(\frac{9}{2}\)\(x=\)\(-9\)

\(\Leftrightarrow\)\(x=\)\(-2\)

\(\Rightarrow\)\(y=3\)

Vậy giao điểm của (d1) và (d2) là \(\left(-2;3\right)\)

c) Gọi phương trình đường thẳng cần tìm là (d): y = ax + b 

(d) // (d1) => (d):\(\frac{3}{2}\) \(x+b\)

A \(\in\)(d2) => A \((\)\(\frac{-4}{3}\)\(;1\)\()\)

Thay tọa độ A vào đường thẳng (d) ta có :

1 = \(\frac{3}{2}\) .\(\frac{-4}{3}\)+ b

\(\Leftrightarrow\)b = 3

Vậy (d): y =\(\frac{3}{2}\) \(x+3\)

:3