K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

ta có : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|2\overrightarrow{CH}\right|=2CH\) với \(H\) là chân đường cao kẻ từ \(C\)

ta có : \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{BA}\right|=AB\)

mà ta có : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\) \(\Rightarrow AB=2CH\)

\(\Rightarrow\Delta ABC\) là tam giác vuông tại \(C\) (tính chất đường trung tuyến)

vậy ..........................................................................................

12 tháng 5 2017

Dựng hình hình hành CADB.
A B C D
Theo quy tắc hình bình hành: \(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vì vậy \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD\);
Mặt khác \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{CA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BA}\right|=BA\).
Suy ra: \(CD=AB\).
Hình bình hành CADB có hai đường chéo bằng nhau (\(CD=AB\) )nên hình bình hành CADB là hình chữ nhật.

NV
8 tháng 10 2019

\(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\)

\(\Leftrightarrow CA^2+CB^2+2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-2\overrightarrow{CA}.\overrightarrow{CB}\)

\(\Leftrightarrow4\overrightarrow{CA}.\overrightarrow{CB}=0\)

\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=0\)

\(\Rightarrow CA\perp CB\Rightarrow\Delta ABC\) vuông tại C

27 tháng 2 2016

Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)

\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:

a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)

\(=\cos150^o+\sin30^o+\tan60^o\)

\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)

\(=\frac{\sqrt{3}+1}{2}\)

b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)

\(=\sin90^o+\cos30^o+\cos0^o\)

\(=1+\frac{\sqrt{3}}{2}\)

\(=\frac{2+\sqrt{3}}{2}\)

NV
3 tháng 5 2021

a.

\(P=cos120^0+cos120^0+cos120^0=-\dfrac{3}{2}\)

b.

\(A=\dfrac{\dfrac{sinx}{cosx}-\dfrac{cosx}{cosx}}{\dfrac{sinx}{cosx}+\dfrac{cosx}{cosx}}=\dfrac{tanx-1}{tanx+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)

c.

\(A=\dfrac{cos\left(720+30\right)+sin\left(360+60\right)}{sin\left(-360+30\right)-cos\left(-360-30\right)}=\dfrac{cos30+sin60}{sin30-cos30}=-3-\sqrt{3}\)

Gọi M là trung điểm của BC

Ta có: ΔABC đều

mà AM là đường trung tuyến

nên AM\(\perp\)BC tại M

Xét ΔAMB vuông tại M có \(sinB=\dfrac{AM}{AB}\)

=>\(\dfrac{AM}{1}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AM=\dfrac{\sqrt{3}}{2}\)

Xét ΔABC có AM là đường trung tuyến

nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AM}\)

=>\(\overrightarrow{AB}-\overrightarrow{CA}=2\cdot\overrightarrow{AM}\)

=>\(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=2\cdot AM=2\cdot\dfrac{\sqrt{3}}{2}=\sqrt{3}\)

=>A đúng, B và C đều sai

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)

\(=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|=\left|\overrightarrow{CB}\right|=CB=1\)

=>D sai

NV
26 tháng 11 2021

Dựng hình bình hành ABDC \(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AD}\)

\(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{MA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BA}+\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|\overrightarrow{AD}+\overrightarrow{MA}\right|=\left|\overrightarrow{MC}+\overrightarrow{CA}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MD}\right|=\left|\overrightarrow{MA}\right|\)

\(\Leftrightarrow MD=MA\)

\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng AD

NV
19 tháng 8 2021

\(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|=\left|\overrightarrow{OA}+\overrightarrow{BC}\right|=\left|\overrightarrow{OA}+\overrightarrow{AD}\right|=\left|\overrightarrow{OD}\right|=OD=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\)

\(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|=\left|\overrightarrow{AB}+\overrightarrow{AB}\right|=2\left|\overrightarrow{AB}\right|=2AB=2a\)

\(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|=\left|\overrightarrow{CD}+\overrightarrow{AD}\right|=\left|\overrightarrow{BA}+\overrightarrow{AD}\right|=\left|\overrightarrow{BD}\right|=BD=a\sqrt{2}\)

NV
19 tháng 8 2021

undefined