Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy n=2 thỏa mãn điều kiện
Với n>2 ta có:
\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n^3-1\right)\left(n+1\right)\left(n^2-n+1\right)\)
Do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n^3-1\)hoặc \(n^2-1=\left(n-1\right)\left(n+1\right)\)
Để ý rằng \(\left(n^2-n+1;n^3-1\right)\le\left(n^3+1;n^3-1\right)\le2\)
Mặt khác \(n^2-n+1=n\left(n-1\right)+1\)là số lẻ, do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n+1\)
Nhưng \(n^2-n+1=\left(n+1\right)\left(n-2\right)+3\)
Vì vậy ta phải có \(n^2-n+1=3^k\left(k\in Z^+\right)\)
Vì \(n>2\Rightarrow k\ge2\)
do đó \(3|n^2-n+1\Rightarrow n\equiv2\left(mod3\right)\)
Nhưng mỗi TH \(n\equiv2,5,8\left(mod9\right)\Rightarrow n^2-n+1\equiv3\left(mod9\right)\)(mâu thuẫn)
Vậy n=2
Bài làm rất hay mặc dù làm rất tắt.
Tuy nhiên:
Dòng thứ 4: Ước số nguyên tố của \(n^2-n+1\)chia hết cho \(n^3-1\)hoặc \(n^2-1\)( em viết thế này không đúng rồi )
------> Sửa: ước số nguyên tố của \(n^2-n+1\) chia hết \(n^3-1\) hoặc \(n^2-1\)
Hoặc: ước số nguyên tố của \(n^2-n+1\) là ước \(n^3-1\) hoặc \(n^2-1\)
Dòng thứ 6 cũng như vậy:
a chia hết b khác hoàn toàn a chia hết cho b
a chia hết b nghĩa là a là ước của b ( a |b)
a chia hết cho b nghĩa là b là ước của a.( \(a⋮b\))
3 dòng cuối cô không hiểu em giải thích rõ giúp cô với. Please!!!!
Nhưng cô có cách khác dễ hiểu hơn này:
\(n^2-n+1=3^k\);
\(n+1⋮3\)=> tồn tại m để : n + 1 = 3m
=> \(\left(n+1\right)\left(n-2\right)+3=3^k\)
<=>\(3m\left(n+1-3\right)+3=3^k\)
<=> \(m\left(n+1\right)-3m+1=3^{k-1}\)
=> \(m\left(n+1\right)-3m+1⋮3\)
=> \(1⋮3\)vô lí
thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)
có bổ đề SCP LẺ chia 8 dư 1 do đó:
trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)
\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)
\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)
thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)
đến đây thì đơn giản
Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2 (n \(∈\) N)
Suy ra : 4n2 = 4p4 + 4p3 + 4p2 + 4p + 4 > 4p4 + 4p3 + p2 = (2p2 + p)2
Và 4n2 < 4p4 + p2 + 4 + 4p3 + 8p2 + 4p = (2p2 + p + 2)2.
Vậy : (2p2 + p)2 < (2n)2 < (2p2 + p + 2)2.
Suy ra :(2n)2 = (2p2 + p + 2)2 = 4p4 + 4p3 +5p2 + 2p + 1
Vậy 4p4 + 4p3 +5p2 + 2p + 1 = 4p4 + 4p3 +4p2 +4p + 4 (vì cùng bằng 4n2 )
=> p2 - 2p - 3 = 0
=> (p + 1) (p - 3) = 0
do p > 1 => p - 3 = 0 => p = 3 (tm)
Đặt \(n^4+n^3+1=a^2\)
\(\Leftrightarrow64n^4+64n^3+64=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2-16n^2+8n+16n^2+63=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2+8n+63=\left(8a\right)^2\)
\(\Rightarrow\left(8a\right)^2>\left(8n^2+4n-1\right)^2\)
\(\Rightarrow\left(8a\right)^2\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n-1\right)^2+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n\right)^2-2\left(8n^2+4n\right)+1+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow16n^2\le64\)
\(\Rightarrow n^2\le4\Rightarrow n\in\left\{1;2\right\}\) vì m nguyên dương.
Vậy ....
666666666666666666666666666666666666667777777777777777777777777788888888888888888888899999999999999999999999999944444444444444444444445555555555555555555523243435356666356467578556475786896897896756745342111111111111111111111122222222222222222223333333333333333333333333333333333344444454444444444444555555555555556666666666666666666666777777777777777777777778888888888888899999999999999101010101010101010101010101001010010100101001010010100000000000000000000000000000000000000000000001111111111111111111111000000000000000010101010