Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng tất cả các hiệu đó chính là tổng tất cả các số có giá trị tuyệt đối nhỏ hơn 20 và trừ đi số thứ tự của chúng.
- tổng tất cả các số có giá trị tuyệt đối nhỏ hơn 20 là bằng 0. Có 19-(-19)+1 = 39 số.
- Tổng của các số thứ tự từ 1 đến 39 là: 39*40/2= 780.
- Vậy tổng của tất cả các hiệu đó (mang dấu âm) là: -780.
Ta thấy 2011x và 42231 đều chia hết cho 2011 nên 7y chia hết cho 2011.
Mà (7;2011) = 1 nên y chia hết cho 2011.Đặt y = 2011k (\(k\inℕ^∗\) tức là \(k\ge1\))
Suy ra \(2011\left(x+7k\right)=42231=21.2011\)
Chia hai vế cho 2011 ta được: x + 7k = 21 tức là x = 21 - 7k
Do x nguyên dương nên suy ra \(1\le k< 21\).
Vậy \(\hept{\begin{cases}x=21-7k\\y=2011k\end{cases}}\left(1\le k\le20\right)\)
Ta có : n2 + 4 ⋮ n + 2
<=> n2 - 4 + 8 ⋮ n + 2
<=> n2 - 22 + 8 ⋮ n + 2
<=> (n - 2)(n + 2) + 8 ⋮ n + 2
=> 8 ⋮ n + 2 Hay n + 2 ∈ Ư(8) = { ± 1; ± 2; ± 4; ± 8 }
=> n + 2 = { ± 1; ± 2; ± 4; ± 8 }
=> n = { - 10; - 6; - 4; - 3; - 1; 0; 2; 6 }
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{p}\)⇔ p(x+y)=xy (1)
Vì p là số nguyên tố nên suy ra trong hai số x,y luôn có 1 số chia hết cho p.
Không mất tính tổng quát ta giả sử: x ⋮ p ⇒ x=kp (k∈N∗)
Nếu k=1, thay vào (1) ta được: p(p+y)=p ⇒ p+y=1, vô lí.
Do đó k≥2. Từ (1) suy ra: p(kp+y)=kp.y ⇔ y=\(\frac{kp}{k-1}\)
Do y∈N∗ mà (k;k−1)=1 ⇒ p ⋮ k−1 ⇒ k−1∈{1;p}
∙ k−1=1 ⇒ k=2⇒x=y=2p
∙ k−1 = p ⇒ k=p+1 ⇒ x=p(p+1),y=p+1
Vậy phương trình có ba nghiệm là: (2p;2p),(p+1;p2+p),(p2+p;p+1).
Mk khog the tick ra
tat ca cac so nguyen to nhieu lam