\(\left(a+b\right):\left(b+c\right)\) với \(a=2;c:...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

1 tháng 8 2018

a,b,c tỉ lệ với  m, m+n, m+2n  =>  \(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}=k\)

=>  \(a=mk;\)\(b=\left(m+n\right)k=mk+nk\);   \(c=\left(m+2n\right)k=mk+2nk\)

Ta có:  \(VT=4\left(a-b\right)\left(b-c\right)=4\left(mk-mk-nk\right)\left(mk+nk-mk-2nk\right)\)

            \(=4\left(-nk\right)\left(-nk\right)=4n^2k^2\)

\(VP=\left(c-a\right)^2=\left(mk+2nk-mk\right)^2=\left(2nk\right)^2=4n^2k^2\)

suy ra: đpcm

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

22 tháng 11 2018

1. Do y tỉ lệ thuận với x,ta có công thức: y = kx (k là một hằng số khác 0) (k là hệ số tỉ lệ). Thay vào,ta có: \(y=f\left(x\right)=kx=\frac{1}{2}x\)

a) Để \(f\left(x\right)=5\) hay \(y=5\) thì \(y=f\left(x\right)=\frac{1}{2}x=5\Leftrightarrow\frac{x}{2}=5\Leftrightarrow x=10\)

b) Giả sử \(x_1>x_2\Rightarrow\frac{x_1}{2}>\frac{x_2}{2}\) hay \(\frac{1}{2}.x_1>\frac{1}{2}.x_2\) hay \(f\left(x_1\right)>f\left(x_2\right)\) (đpcm)

2. Do y tỉ lệ với x,ta có công thức y = kx (k là hằng số khác 0,là hệ số tỉ lệ). Thay vào,ta có công thức: \(y=f\left(x\right)=kx=12x\)

a) Tương tự bài 1

b) Ta có: \(f\left(-x\right)=12.\left(-x\right)\)

\(-f\left(x\right)=-12.x\)

Mà \(12.\left(-x\right)=-12.x\) suy ra \(f\left(-x\right)=-f\left(x\right)\) (đpcm)

17 tháng 5 2017

a/ \(\left|1-2x\right|>7\Leftrightarrow\left[{}\begin{matrix}1-2x=7\\1-2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x< -6\\2x< 8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\)

b/ \(\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\) ( vì -5<0)

\(\Leftrightarrow x>3\)

17 tháng 5 2017

sao ko trả lời câu c

23 tháng 7 2017

giúp nha người bạn Toshiro Kiyoshi

24 tháng 7 2017

1. Ta có:

a) \(\left(x-2y\right)\left(3xy-2y+3x\right)\)

\(=x\left(3xy-2y+3x\right)-2y\left(3xy-2y+3x\right)\)

\(=3x^2y-2xy+3x^2-6xy^2+4y^2-6xy\)

\(=3x^2y-6xy^2+3x^2-8xy+4y^2\)

b) \(\left(x-1\right)\left(x-2\right)\left(x-3\right)=\left(x-1\right)\left[\left(x-2\right)\left(x-3\right)\right]\)

\(=\left(x-1\right)\left[x\left(x-3\right)-2\left(x-3\right)\right]\)

\(=\left(x-1\right)\left(x^2-3x-2x+6\right)\)

\(=\left(x-1\right)\left(x^2-5x+6\right)\)

\(=x\left(x^2-5x+6\right)-1\left(x^2-5x+6\right)\)

\(=x^3-5x^2+6x-x^2+5x-6\)

\(=x^3-6x^2+11x-6\)

7 tháng 8 2015

Cộng 3 đẳng thức vế với vế suy ra:

(a + b + c)2 = 27/4

=> \(a+b+c=\frac{\sqrt{27}}{2}\) hoặc \(a+b+c=\frac{-\sqrt{27}}{2}\)

Nếu a, b, c hữu tỉ thì tổng cũng là số hữu tỉ , mà \(\frac{\sqrt{27}}{2}\) và \(\frac{-\sqrt{27}}{2}\) đều là số vô tỉ

=> Không tồn tại số hữu tỉ a, b, c thỏa mãn đầu bài

7 tháng 8 2015

a(a+b+c)+b(a+b+c)+c(a+b+c)=-12+18+3/4

<=>(a+b+c)2=27/4

<=>a+b+c=\(\frac{3\sqrt{3}}{2}\)

 

Suy ra a=-12:(a+b+c)=........

b=........

c=.........