Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 3( 2x - y ) = 2 ( x + 2y )
<=> 6x - 3y = 2x + 4y
<=> 6x - 2x = 4y + 3y
<=> 4x = 7y
=> \(\frac{x}{y}=\frac{7}{4}\)
\(\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{15}=\frac{x}{21};\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{21}=\frac{z}{28}=\frac{x+y+z}{15+21+28}=\frac{192}{64}=3\)
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=21.3=63\\z=28.3=84\end{cases}}\)
Vậy: x=45; y=63;z=84
Theo bài ra ta có :
\(\frac{x}{5}\)=\(\frac{y}{7}\)\(\Rightarrow\frac{x}{15}\)=\(\frac{y}{21}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{28}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{21}=\frac{z}{28}\)và x+y+z=192
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{21}=\frac{z}{28}=\frac{x+y+z}{15+21+28}=\frac{192}{64}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.15=45\\y=3.21=63\\z=3.28=74\end{cases}}\)
Nhớ k mk nha
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\) => \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Vậy ...
a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ
\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Vì \(\left|2x+1\right|\ge0;\left|x+y-\frac{1}{2}\right|\ge0\)
Mà \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\Rightarrow\orbr{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)(1)
Thế (1) vào A
\(\Rightarrow A=4.\left(-\frac{1}{2}\right)^3.\left(\frac{1}{4}\right)^2-\frac{1}{4}.\left(-\frac{1}{2}\right)+2.\frac{1}{4}-5\)
\(\Rightarrow A=-\frac{1}{2}+\frac{1}{8}+\frac{1}{2}-5\)
\(\Leftrightarrow A=\frac{1}{8}-5=\frac{1}{8}-\frac{40}{8}=-\frac{39}{8}\)
Ta có :
\(\left|1-2x\right|-\left|3x+1\right|=0\)
\(\Leftrightarrow\)\(\left|1-2x\right|=\left|3x+1\right|\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}1-2x=3x+1\\1-2x=-3x-1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x+2x=1-1\\-2x+3x=-1-1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x=0\\x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=-2\)
Chúc bạn học tốt ~
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai
\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5
Áp dụng tính chất DTSBN ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)
x/1/2 = -30 => x = -15
y/1/3 = -30 => y = -10
z/1/5 = -30 => z = -6
TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)
x/1/2 = 30 => x = 15
y/1/3 = 30 => y = 10
z/1/5 = 30 => z= 6
a,
2x=3y=5z
=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
mà l x-2y l =5
=>x-2y=5 hoặc x-2y=-5
nếu x-2y=5
=>x/15=2y/20=x-2y/15-20=5/-5=-1
=>x=-15
=>y=-10
=>z=-6
nếu x-2y=-5
=>x/15=2y/20=x-2y=-5/-5=1
=>x=15
=>y=10
=>z=6
còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm ! đăng câu khác mik làm tiếp cho !
Bài 2, \(\left(x-1\right)^3=27\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Bài 3, \(-2,4-\frac{2}{3}< x\le\frac{5}{3}-1\frac{2}{5}\)
\(\Leftrightarrow-3,0\left(6\right)< x\le0,2\left(6\right)\)
Vì x nguyên nên \(x\in\left\{-3;-2;-1;0\right\}\)
Bài 4, Từ \(2x=3y=4z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)(cùng chia cho 12)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{130}{13}=10\)
\(\Rightarrow\hept{\begin{cases}x=6.10=60\\y=4.10=40\\z=3.10=30\end{cases}}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
3 . ( 2x - y ) = 2 . ( x + y )
6x - 3y = 2x + 2y
6x - 2x = 2y + 3y
4x = 5y
Vậy, \(\frac{x}{y}=\frac{4}{5}\)
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow2\cdot\left(x+y\right)=3\cdot\left(2x-y\right)\)
\(\Rightarrow2x+2y=6x-3y\)
\(\Rightarrow2x-6x=-3y-2y\Rightarrow-4x=-5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)