\(\frac{x}{y}\) biet \(\frac{2x-y}{x+y}\) = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

Ta có: \(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)

=> (2x - y).3 = (x+y) .2

6x - 3y = 2x + 2y

6x - 2x = 3y + 2y

4x = 5y

=> \(\frac{x}{5}\)=\(\frac{y}{4}\)

Vậy tỉ số \(\frac{x}{y}\)=\(\frac{5}{4}\)

4 tháng 12 2016

\(\frac{2x-y}{x+y}=\frac{2}{3}\)

\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Rightarrow6x-3y=2x+2y\)

\(\Rightarrow6x-2x=2y+3y\)

\(\Rightarrow4x=5y\)

\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)

Vậy \(\frac{x}{y}=\frac{5}{4}\)

19 tháng 7 2016

Ta có : \(\frac{2x-y}{x+y}=\frac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\Leftrightarrow6x-3y=2x+2y\Leftrightarrow4x=5y\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)

19 tháng 7 2016

\(\frac{2x-y}{x+y}=\frac{2}{3}=>\left(2x-y\right).3=\left(x+y\right).2=>6x-3y=2x+2y\)

\(=>6x-2x=2y-\left(-3y\right)=>6x-2x=2y+3y=>4x=5y=>\frac{x}{y}=\frac{5}{4}\)

Vậy tỉ số x/y=5/4

14 tháng 7 2016

\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)

                    \(\Rightarrow6x-3y=2x+2y\)

                   \(\Rightarrow6x-2x=3y+2y\)

                  \(\Rightarrow4x=5y\)

                  \(\Rightarrow\frac{x}{y}=\frac{5}{4}\)

T ủng hộ mk nhé bạn ^...^ ^_^

14 tháng 7 2016

\(\frac{2x-y}{x+y}=\frac{2}{3}\)

\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Rightarrow6x-3y=2x+2y\)

\(\Rightarrow4x=5y\)

\(\Rightarrow\frac{x}{y}=\frac{4}{5}\)

Vậy.................

31 tháng 10 2016

1) \(\frac{2x-y}{x+y}=\frac{2}{3}\)

\(\Leftrightarrow\left(2x-y\right).3=2\left(x+y\right)\)

\(\Leftrightarrow6x-3y=2x+2y\)

\(\Leftrightarrow6x-2x=2y+3y\)

\(\Rightarrow4x=5y\)

\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)

2) \(\begin{cases}\frac{b}{a}=2\\\frac{c}{b}=3\end{cases}\) \(\Rightarrow\begin{cases}b=2a\\c=3b\end{cases}\)

Khi đó: \(\frac{a+b}{b+c}=\frac{a+2a}{2a+3}\)

\(=\frac{a+2a}{2a+3.2a}\)

\(=\frac{3a}{8a}=\frac{3}{8}\)

Chúc bạn học tốt

3 tháng 11 2019

Từ x:3=y:5 suy ra 4x:12=y:5 và 4x-y=14

Áp dụng tính chất của dãy tỉ số bằng nhau

x:3=y:5=4x-y:12-5=14:7=2

+)x:3=2 suy ra x=6

+)y:7=2 suy ra y=14

Vậy x=6;y=7

1 tháng 8 2020

Ta có: y/3 = z/7 => y/12 = z/28 (cùng nhân 2 vế với 1/4).
Mà x/11 = y/12 (GT)
=> x/11 = y/12 = z/28
<=> 2x/22 = y/12 = z/28 = 2x - y + z /22 - 12 + 28 = 152/38 = 4

2x/22 = 4 => 2x = 88 => x = 44.
y/12 = 4 => y = 48.
z/28 = 4 => z = 112.
Vậy x = 44, y=48 và z = 112

1 tháng 8 2020

\(\frac{x}{11}=\frac{y}{12}\)(1)

\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\)(2)

Từ ( 1 ) và ( 2 ) => \(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)và 2x - y + z = 152

=> \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)và 2x - y + z = 152

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}=4\)

\(\frac{2x}{22}=4\Leftrightarrow\frac{x}{11}=4\Rightarrow x=44\)

\(\frac{y}{12}=4\Rightarrow y=48\)

\(\frac{z}{28}=4\Rightarrow z=112\)

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.