K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

- Xét: a : b = 9 : 4 \(\Rightarrow\frac{a}{9}=\frac{b}{4}\)\(\Rightarrow\frac{a}{45}=\frac{b}{20}\)

       b : c = 5 : 3 \(\Rightarrow\frac{b}{5}=\frac{c}{3}\)\(\Rightarrow\frac{b}{20}=\frac{c}{12}\)    

=> \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)

- Đặt: \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\hept{\begin{cases}a=45.k\\b=20.k\\c=12.k\end{cases}}\)

-Thay a = 45.k, b = 20.k , c = 12.k vào \(\frac{a-b}{b-c}\) ;ta có: 

\(\frac{a-b}{b-c}=\frac{45.k-20.k}{20.k-12.k}=\frac{25.k}{8.k}=\frac{25}{8}\)

Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)

23 tháng 12 2016

bn nhận xét thấy mẫu và tử đều có b nên:

a/b = 9/4 => a = 9b/4 (1)

b/c = 5/3 => c= 3b/5 (2)

thay (1) va(2) vào có (a-b)/(b-c) = (9b/4 - b)/(b- 3b/5) = 25/8

23 tháng 12 2016

thanks for youvui

10 tháng 5 2023

Quy đồng mẫu số (nhân cả 2 vế với abc) ta được:

a2c + b2a + c2b ≧  b2c+c2a+a2b

 a2c -abc + b2a - a2b  + c2b - b2c- c2a+abc ≧ 0

-ac(b-a) +ab(b-a) +cb(c-b) -ac(c-b) ≧ 0

-a(c-b)(b-a) +c(b-a)(c-b) ≧ 0

(c-b)(b-a)(c-a) ≧ 0 luôn đúng (vì 0≤a≤b≤c)

Vậy a/b +b/c + c/a ≧ b/a +c/b+a/c

17 tháng 3 2017

1.theo bài ra ta có

\(\dfrac{2}{3}x\) = \(\dfrac{x}{\dfrac{3}{2}}\) =\(\dfrac{3x}{\dfrac{9}{2}}\) ; \(\dfrac{3}{4}y\) = \(\dfrac{y}{\dfrac{4}{3}}\) =\(\dfrac{4y}{\dfrac{16}{3}}\); \(\dfrac{4}{5}z\) = \(\dfrac{\dfrac{z}{5}}{4}\)=\(\dfrac{5z}{\dfrac{25}{4}}\)

\(\Rightarrow\)\(\dfrac{3x+4y-5z}{\dfrac{9}{2}+\dfrac{16}{3}-\dfrac{25}{4}}=\dfrac{129}{\dfrac{43}{12}}=36\)

\(\Rightarrow\dfrac{3x}{\dfrac{9}{2}}=36\Rightarrow3x=36\cdot\dfrac{9}{2}=162\Rightarrow x=\dfrac{162}{3}=54\)

\(\Rightarrow\dfrac{4y}{\dfrac{16}{3}}=36\Rightarrow4y=36\cdot\dfrac{16}{3}=192\Rightarrow y=\dfrac{192}{4}=48\)

\(\Rightarrow\dfrac{5z}{\dfrac{25}{4}}=36\Rightarrow5z=36\cdot\dfrac{25}{4}=225\Rightarrow z=\dfrac{225}{5}=45\)

2.vì giá trị của A nhỏ nhất nên\(|x-5|\)phải nhỏ nhất và \(|x+300|\)cũng phải nhỏ nhất

mặt khác \(|x-500|\ge0\)\(|x+300|\ge0\)

\(\Rightarrow|x-500|=0\)\(|x+300|=0\)

\(\Rightarrow\)x = 500 hoặc x = -300

thay vào biểu thức A ta được:

nếu x = 500

\(\Leftrightarrow|500-500|+|500+300|=800\)

nếu x = -300

\(\Leftrightarrow|-300-500|+|-300+300|=800\)

vậy giá trị nhỏ nhất của biểu thức A là 800

3.a) \(\Rightarrow\)a-b= 2a + 2b \(\Rightarrow\)-b-2b = 2a - a\(\Leftrightarrow\)a= -3b

thay vào ta được:

-3b-b=2(-3b+b)=\(\dfrac{-3b}{b}\)\(\Leftrightarrow\)-4b = -3\(\Rightarrow\)b=\(\dfrac{3}{4}\)\(\Rightarrow a=-3\cdot\dfrac{3}{4}=-\dfrac{9}{4}\)

vậy a = \(\dfrac{-9}{4}\) và b = \(\dfrac{3}{4}\)

b) cách làm tương tự câu 2 (p/s lười trình bày lắm) đáp số bằng 1

17 tháng 3 2017

đăng từng câu 1 thôi

28 tháng 12 2023

loading...