Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đạo hàm f'(x) = 2 - m x 2 ( x + 1 ) x ( x + 1 )
f'(x) = 0 ⇒ x = 2 m ↔ x = m 2 4 ∈ [ 0 ; 4 ] , ∀ m > 1
+ Lập bảng biến thiên, ta kết luận được
m a x [ 0 ; 4 ] f ( x ) = f ( 4 m 2 ) = m 2 + 4
+ Vậy ta cần có m 2 + 4 < 3
↔ m < 5 → m > 1 m ∈ ( 1 ; 5 )
Chọn C.
Đạo hàm f'(x) = m 2 - m + 1 ( x + 1 ) 2 > 0, ∀ x ∈ [ 0 ; 1 ]
Suy ra hàm số f(x) đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m
Theo bài ta có:
-m2+ m= -2 nên m= -1 hoặc m= 2.
Chọn D.
Đáp án D
Phương pháp:
Dựa vào đồ thị hàm số ta xác định được điểm cao nhất và điểm thấp nhất của đồ thị trên đoạn [-1;3]
Tung độ điểm cao nhất là giá trị lớn nhất của hàm số, tung độ điểm thấp nhất là giá trị nhỏ nhất của hàm số trên đoạn [-1;3].
Từ đó ta tìm được: M;m => M-m
Cách giải:
Từ đồ thị hàm số ta thấy trên đoạn [-1;3] thì điểm cao nhất của đồ thị là điểm A(3;3) và điểm thấp nhất của đồ thị là B(2;-2) nên GTLN của hàm số là M=3 và GTNN của hàm số là m = -2
Từ đó M - m = 3 - (-2) = 5
f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].
Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.
Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.
Chọn C
Ta có . Dấu xảy ra khi .
Ta có . Dấu xảy ra khi .
Xét hàm số , có .
Trường hợp 1: . Khi đó .
Áp dụng bất đẳng thức ta có .
Trường hợp 2:. Khi đó .
Áp dụng bất đẳng thức và ta có .
Suy ra .
Vậy nhận giá trị nhỏ nhất có thể được là khi .
Do đó .
Chọn C
Xét hàm số f(x) = | x 2 + a x + b |. Theo đề bài, M là giá trị lớn nhất của hàm số trên [-1;3]
Suy ra
Nếu M = 2 thì điều kiện cần là và cùng dấu
Ngược lại, khi
Ta có, hàm số
M là giá trị lớn nhất của hàm số f(x) trên [-1;3]
Vậy
Ta có: a + 2b = -4.
\(f'\left(x\right)=3x^2-m=0\Rightarrow x^2=\dfrac{m}{3}\)
TH1: \(m\le0\Rightarrow f\left(x\right)\) đồng biến trên R \(\Rightarrow\min\limits_{\left[1;3\right]}f\left(x\right)=f\left(1\right)=19-m\)
\(\Rightarrow19-m\le2\Rightarrow m\ge17\) (ktm)
TH2: \(m\in\left[3;27\right]\)
\(\Rightarrow x=\sqrt{\dfrac{m}{3}}\in\left[1;3\right]\) là nghiệm lớn hơn \(\Rightarrow\) luôn là điểm cực tiểu
\(\Rightarrow\min\limits_{\left[1;3\right]}f\left(x\right)=f\left(\sqrt{\dfrac{m}{3}}\right)=\dfrac{m}{3}\sqrt{\dfrac{m}{3}}-m\sqrt{\dfrac{m}{3}}+18=-\dfrac{2m}{3}\sqrt{\dfrac{m}{3}}+18\)
\(\Rightarrow-\dfrac{2m}{3}\sqrt{\dfrac{m}{3}}+18\le2\Rightarrow m\ge12\)
\(\Rightarrow12\le m\le27\)
TH3: \(0< m< 3\Rightarrow\sqrt{\dfrac{m}{3}}< 1\Rightarrow\) hàm đồng biến trên \(\left[1;3\right]\) quay về TH1 (ktm)
TH4: \(m>27\Rightarrow\left[1;3\right]\subset\left(-\sqrt{\dfrac{m}{3}};\sqrt{\dfrac{m}{3}}\right)\Rightarrow\) hàm nghịch biến trên \(\left[1;3\right]\)
\(\Rightarrow\min\limits_{\left[1;3\right]}f\left(x\right)=f\left(3\right)=45-3m\le2\Rightarrow m\ge\dfrac{43}{3}\)
\(\Rightarrow m>27\)
Vậy \(m\ge12\)