Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, bạn tự vẽ nhé
b, Để hàm số nghịch biến khi m < 0
c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3
Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)
d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3
Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)
bổ sung hộ mình nhé
( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, b=k=0
b,(2k-1).3+k=0 => 3k=3 => k =1
c, 2k-1 = 3/5=> 2k = 8/5 => k = 4/5 khác 4 vậy k = 4/5
d, (2k-1)(-3) +k =2 => -5k =-1 => k =1/5
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)
Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)
Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)
Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.
\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)
\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)
\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)
Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)
Bài 3: Cho hàm số y=(m-1)x + 2m. Xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ = 5
![](https://rs.olm.vn/images/avt/0.png?1311)
Để đths trên là hầm bậc nhất khi m - 1 \(\ne\)0 <=> \(m\ne1\)
đths y = (m-1)x + 2m cắt trục hoành taị điểm có hoành độ bằng 5
Thay x = 5 ; y = 0 ta được : \(5\left(m-1\right)+2m=0\Leftrightarrow7m-5=0\Leftrightarrow m=\frac{5}{7}\)( tmđk )
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Vì đths y=ax+by=ax+b song song với đường thẳng y=−2xy=−2x nên a=−2a=−2
Đths cần tìm cắt trục hoành tại điểm AA có hoành độ 22. Mà AA nằm trên trục hoành nên tung độ của AA bằng 00. Vậy đths đi qua điểm A(2,0)A(2,0)
Do đó: 0=a.2+b⇔0=(−2).2+b⇒b=40=a.2+b⇔0=(−2).2+b⇒b=4
Vậy (a,b)=(−2,4)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hoành độ giao điểm của (P) và (d) là nghiệm của PT:
\(x^2=2x+m^2-2m\)
\(\Leftrightarrow x^2-2x-\left(m^2-2m\right)=0\)
\(\Delta^'=\left(-1\right)^2-1\cdot\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\left(\forall m\right)\)
=> PT luôn có nghiệm với mọi m
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Ta có: \(x_1^2+2x_2=3m\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=3m\)
\(\Leftrightarrow\left(x_1^2+x_2^2\right)+x_1x_2=3m\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=3m\)
\(\Leftrightarrow2^2+m^2-2m=3m\)
\(\Leftrightarrow m^2-5m+4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\Rightarrow\orbr{\begin{cases}m=1\\m=4\end{cases}\left(tm\right)}\)
Vậy \(m\in\left\{1;4\right\}\)
a: Thay x=1 vào y=4x+m, ta được:
y=4*1+m=m+4
Thay x=1 và y=m+4 vào y=2mx+5, ta được:
2m+5=m+4
=>m=-1
b: Thay x=3 và y=0 vào (d), ta được:
3(3m-2)+4=0
=>9m-6+4=0
=>9m-2=0
=>m=2/9