Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Δ=(m+2)^2-4*2m
=m^2+4m+4-8m
=(m-2)^2>=0
Để PT luôn có hai nghiệm phân biệt thì m-2<>0
=>m<>2
\(\left(x_1+x_2\right)^2-x_1x_2< =3\)
=>(m+2)^2-2m<=3
=>m^2+4m+4-2m-3<=0
=>m^2+2m+1<=0
=>(m+1)^2<=0
=>m=-1
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=1-(m+2)\geq 0\Leftrightarrow m\leq -1$
Áp dụng định lý Viet:
$x_1+x_2=2$
$x_1x_2=m+2$
Khi đó:
\(\text{VT}=\sqrt{[(x_1-2)^2+mx_2][(x_2-2)^2+mx_1]}=\sqrt{[(x_1-x_1-x_2)^2+mx_2][(x_2-x_1-x_2)^2+mx_1]}\)
\(=\sqrt{(x_2^2+mx_2)(x_1^2+mx_1)}=\sqrt{x_1x_2(x_2+m)(x_1+m)}\)
\(=\sqrt{x_1x_2[x_1x_2+m(x_1+x_2)+m^2]}\)
\(=\sqrt{(m+2)[m+2+2m+m^2]}=\sqrt{(m+2)(m^2+3m+2)}\)
\(=\sqrt{(m+2)^2(m+1)}\)
Lại có:
\(\text{VP}=|x_1-x_2|\sqrt{x_1x_2}=\sqrt{(x_1-x_2)^2x_1x_2}=\sqrt{[(x_1+x_2)^2-4x_1x_2]x_1x_2}\)
\(=\sqrt{-4(m+1)(m+2)}\)
YCĐB thỏa mãn khi:
$\sqrt{(m+1)(m+2)^2}=\sqrt{-4(m+1)(m+2)}$
$\Leftrightarrow (m+1)(m+2)^2=-4(m+1)(m+2)$
$\Leftrightarrow m=-1; m=-2$ hoặc $m=-6$ (đều tm)
\(\Delta'=1-\left(m-3\right)>0\Rightarrow m< 4\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2x_1+m-3=0\Rightarrow x_1^2=2x_1-m+3\)
Thế vào bài toán:
\(2x_1-m+3-2x_2+x_1x_2=-12\)
\(\Leftrightarrow2\left(x_1-x_2\right)=-12\Rightarrow x_1=x_2-6\)
Thế vào \(x_1+x_2=2\Rightarrow x_2-6+x_2=2\Rightarrow x_2=4\Rightarrow x_1=-2\)
Mặt khác: \(x_1x_2=m-3\Leftrightarrow-8=m-3\Rightarrow m=-5\)
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+2\right)\)
\(=4m^2+8m+4-4m^2-8\)
\(=8m-4\)
Để pt có 2 nghiệm thì \(\Delta>0\)
\(\Leftrightarrow8m-4>0\)
\(\Leftrightarrow m>\dfrac{1}{2}\)
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
\(x_1^2+x_1x_2+2=3x_1+x_2\)
\(\Leftrightarrow x_1^2+m^2+2+2=2x_1+2\left(m+1\right)\)
\(\Leftrightarrow x_1^2-2x_1+4+m^2-2m-2=0\)
\(\Leftrightarrow x_1^2-2x_1+2+m^2-2m=0\)
\(\Leftrightarrow x_1^2-2x_1+1+m^2-2m+1=0\)
\(\Leftrightarrow\left(x_1-1\right)^2+\left(m-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\m=1\end{matrix}\right.\)(tm)
Vậy \(m=1\)
\(x^2-\left(m+3\right)x-m+5=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+3\\x_1x_2=\dfrac{c}{a}=-m+5\end{matrix}\right.\)
Ta có :
\(x_1^2x_2+x_1x_2^2=7\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)-7=0\)
\(\Leftrightarrow\left(-m+5\right)\left(m+3\right)-7=0\)
\(\Leftrightarrow-m^2-3m+5m+15-7=0\)
\(\Leftrightarrow-m^2+2m+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
△'=(-2)2-1(m-1)
=4-m+1
=5-m
Để PT có 2 no pb thì △'>0
⇒5-m>0
⇒m<5
theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
mà: \(x^2_1x_2+x_1x_2^2-2\left(x_1+x_2\right)=0\)
⇔\(\left(x_1x_2\right)\left(x_1+x_2\right)-2\left(x_1+x_2\right)=0\)
⇔\(\left(m-1\right)4-2\cdot4=0\)
⇔\(4m-4-8=0\)
⇔4m-12=0
⇔4m=12
⇔m=3
Vậy ...