K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

25 tháng 10 2019

Đáp án C

Để phương trình vô nghiệm thì 

19 tháng 5 2019

Chọn D

Phương trình 3sinx + mcosx= 5 vô nghiệm khi:

32+ m2 < 52 ↔ m2 < 16 ↔ -4 < m < 4

9 tháng 10 2019

NV
22 tháng 10 2021

Do \(m^2-2m+1=\left(m-1\right)^2\ge0>-1;\forall m\) nên phương trình đã cho vô nghiệm khi:

\(m^2-2m+1>1\)

\(\Leftrightarrow m^2-2m>0\)

\(\Rightarrow\left[{}\begin{matrix}m>2\\m< 0\end{matrix}\right.\)

 

23 tháng 5 2019

=>(4m-1)*sinx-m*sinx=-8

=>sinx(4m-2)=-8

=>sinx(2m-1)=-4

TH1: m=1/2

PT sẽ là 0*sin x=-4

=>PTVN

TH2: m<>1/2

PT sẽ tương đương với \(sinx=\dfrac{-4}{2m-1}\)

Để phương trình vô nghiệm thì -4/(2m-1)>1 hoặc -4/(2m-1)<-1

=>4/(2m-1)<-1 hoặc 4/(2m-1)>1

=>\(\dfrac{4+2m-1}{2m-1}< 0\) hoặc \(\dfrac{4-2m+1}{2m-1}>0\)

=>\(\dfrac{2m+3}{2m-1}< 0\) hoặc \(\dfrac{2m-5}{2m-1}< 0\)

=>-3/2<m<1/2 hoặc 1/2<m<5/2

6 tháng 8 2023

Sao thành được sinx(4m-2) thế?

Từ (4m-1)sinx - m.sinx thì lấy sinx làm nhân tử chung thì ra sinx(4m-1-m) = sinx(3m-1) chứ nhỉ?

13 tháng 11 2021

\(msinx-mcosx=2\)

Phương trình có nghiệm:

\(\Leftrightarrow m^2+\left(-m\right)^2\ge2^2\)

\(\Leftrightarrow2m^2-4\ge0\Rightarrow\)\(\left[{}\begin{matrix}x\le-\sqrt{2}\\x\ge\sqrt{2}\end{matrix}\right.\)

Phương trình vô nghiệm

\(\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)