K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=1 và y=5 vào (d), ta được:

2m+2m-3=5

=>4m-3=5

hay m=2

b: Phương trình hoành độ giao điểm là:

\(x^2-2mx-2m+3=0\)

Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

=>m=-3 hoặc m=1

2 tháng 6 2015

mới đầu cho (P) và (d) bằng nhau ,sau đó giải pt bâc hai .ra đenta.cho đenta =0 r giải như bình thường nha

mình ns sơ v thui nè

14 tháng 4 2020

\(1.pt:x^2-4x+m-3=0\)

\(\Delta=\left(-4\right)^2-4.1.\left(m-3\right)=28-4m\)

Để pt trên có nghiệm thì \(28-4m\ge0\Leftrightarrow-4m\ge-28\Leftrightarrow m\le7\)

Với các giá trị \(m\le7\) thì pt trên có nghiệm ( có nghiệm kép hoặc 2 nghiệm phân biệt)

\(2.\left\{{}\begin{matrix}\left(P\right):y=\frac{1}{2}x^2\\\left(d\right):y=2x-m\end{matrix}\right.\)

Tọa độ giao điểm của (P) và (d) là nghiệm của hpt:

\(\left\{{}\begin{matrix}y=\frac{1}{2}x^2\\y=2x-m\end{matrix}\right.\Leftrightarrow\frac{1}{2}x^2-2x+m=0\left(\alpha\right)\)

Xét \(pt\left(\alpha\right):\Delta=\left(-2\right)^2-\frac{4.1}{2}.m=4-2m\)

a. Để \(\left(P\right)tx\left(d\right)\) thì \(\Delta=0\Leftrightarrow4-2m=0\Leftrightarrow m=2\)

b. Để (P) cắt (d) tại 2 điểm phần biệt thì \(\Delta>0\Leftrightarrow4-2m>0\Leftrightarrow m< 2\)

c. Để (P) và (d) không có điểm chung thì \(\Delta< 0\Leftrightarrow4-2m< 0\Leftrightarrow m>2\)

a: Khi m=3 thì (d); y=2x+3

Phương trình hoành độ giao điểm là:

x2-2x-3=0

=>(x-3)(x+1)=0

=>x=3 hoặc x=-1

Khi x=3 thì y=9

Khi x=-1thì y=1

b: PTHDGĐ là:

\(x^2-2x-m=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-m\right)=4m+4\)

Để (d) tiếp xúc với (P) thì 4m+4=0

=>m=-1

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)

23 tháng 4 2019

Phương trình hoành độ giao điểm của (P) với (d):

\(\frac{-1}{4}x^2=\left(m+1\right)x+m^2+3\)

\(\Leftrightarrow x^2+4\left(m+1\right)x+4m^2+12=0\)

\(\Delta'=2^2\left(m+1\right)^2-4m^2-12\)

\(=4m^2+8m+4-4m^2-12\)

\(=8m-8\)

(P) và (d) không có điểm chung khi pt hoành độ giao điểm vô nghiệm.

\(\Leftrightarrow\Delta'< 0\Leftrightarrow8m-8< 0\)

\(\Leftrightarrow m< 1\)

23 tháng 4 2019

Phương trình hoành độ giao điểm của (p) và (d) là

\(-\frac{1}{4}x^2=\left(m+1\right)x+m^2+3\)<=> \(\frac{1}{4}x^2+\left(m+1\right)x+m^2+3=0\)

\(\left(a=\frac{1}{4},b=m+1,c=m^2+3\right)\)

\(\Delta=b^2-4ac=\left(m+1\right)^2-4\cdot\frac{1}{4}\left(m^2+3\right)\)

\(=m^2+2m+1-m^2-3=2m-2\)

(p) và (d) không có điểm chung <=> \(\Delta< 0\)

<=> \(2m-2< 0\)<=> \(2m< 2\)<=> \(m< 1\)

Vậy với \(m< 1\)thì (p) và (d) không có điểm chung

3 tháng 2 2021

1. Ta có đồ thị :

2. - Xét phương trình hoành độ giao điểm : \(x^2-2x-m=0\)

Có : \(\Delta^,=\left(-1\right)^2-\left(-m\right).1=m+1\)

- Để ( P ) tiếp xúc với d \(\Leftrightarrow\Delta^,=0\)

\(\Leftrightarrow m=-1\)

3. Có phương trình hoành độ giao điểm :

\(x^2-2x-\left(-1\right)=x^2-2x+1=\left(x-1\right)^2\)

\(\Rightarrow x=1\)

\(\Rightarrow y=1\)

Vậy tọa độ tiếp điểm \(I\left(1;1\right)\)

26 tháng 3 2022

a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)

<=> \(5=4m-3\Leftrightarrow m=2\)

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-2m+3=0\)

\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)

Để (P) tiếp xúc (d) thì pt có nghiệm kép khi 

\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)