K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

Ta có: \(\overrightarrow{u}=\left(\dfrac{1}{2};-5\right)\) ; \(\overrightarrow{v}=\left(k;-4\right)\)

Để hai vectơ \(\overrightarrow{u}\)\(\overrightarrow{v}\) cùng phương

\(\Leftrightarrow\dfrac{k}{\dfrac{1}{2}}=\dfrac{4}{5}\Leftrightarrow k=\dfrac{2}{5}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Bước 1: Dựng hình bình hành có cạnh song song với giá của vecto \(\overrightarrow a ,\;\overrightarrow b \) và đường chéo là vecto \(\overrightarrow u ,\;\overrightarrow v \).

Ta dựng được hình hình hành ABCD và DEGH. Trong đó:  DC và DE nằm trên giá của vecto \(\overrightarrow a \), DA và DH nằm trên giá của vecto \(\overrightarrow b \), còn vecto \(\overrightarrow u ,\;\overrightarrow v \) lần lượt là hai dường chéo.

Dễ thấy: \(\overrightarrow u  = \overrightarrow {DA}  + \overrightarrow {DC} ,\;\overrightarrow v  = \overrightarrow {DH}  + \overrightarrow {DE} \)

Mà \(\overrightarrow {DA}  = 3\overrightarrow b ,\;\overrightarrow {DC}  = \overrightarrow a \;,\;\overrightarrow {DH}  = 3\overrightarrow b ,\;\overrightarrow {DE}  =  - 2\overrightarrow a .\)

\( \Rightarrow \overrightarrow u  = 2\overrightarrow b  + \overrightarrow a ,\;\,\overrightarrow v  = 3\overrightarrow b  - 2\overrightarrow a \)

11 tháng 12 2020

u(1/2;-5).    v(k;-4)

30 tháng 3 2017

Giải bài 12 trang 28 sgk Hình học 10 | Để học tốt Toán 10

NV
17 tháng 11 2018

\(\overrightarrow{AD}=2\overrightarrow{DB}\Rightarrow\overrightarrow{AD}=\dfrac{2}{3}\overrightarrow{AB}\) ; \(\overrightarrow{CE}=3\overrightarrow{EA}\Rightarrow\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}\)

Lại có M là trung điểm DE

\(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AE}\right)=\dfrac{1}{2}\left(\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{AI}=\overrightarrow{AI}-\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{8}\overrightarrow{AC}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

17 tháng 11 2018

cảm ơn bạn <3

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Vì \(\overrightarrow a  = 3\overrightarrow i \)nên \(\overrightarrow a  = \left( {3;0} \right)\)

b) Vì \(\overrightarrow b  =  - \overrightarrow j \)nên \(\overrightarrow b  = \left( {0; - 1} \right)\)

c) Vì \(\overrightarrow c  = \overrightarrow i  - 4\overrightarrow j \)nên \(\overrightarrow c  = \left( {1; - 4} \right)\)

d) Vì \(\overrightarrow d  = 0,5\overrightarrow i  + \sqrt 6 \overrightarrow j \)nên \(\overrightarrow d  = \left( {0,5;\sqrt 6 } \right)\)