Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5y+y^2-2xy+5x=\left(x^2-2xy+y^2\right)+\left(5x-5y\right)\)
a/ x2 – 5y + y2 -2xy + 5x = ( x2 - 2xy + y2 ) - 5( y - x ) = ( x - y )2 - 5( y - x ) = ( y - x )2 - 5( y - x ) = ( y - x )( y - x - 5 )
b/ 4x2 – 81(y – 2)2 = 4x2 - 92(y – 2)2= 4x2 – ( 9y – 18)2 = ( 2x -9y -18 )( 2x + 9y + 18 )
c/ x2z – y2z + 2yz – z = ( x2z + yz ) - ( y2z - yz ) - z = z( x2 + y ) - z( y2 - y ) -z = z( x2 + y - y2 +y - 1 ) = z( x2 + 2y - y2 - 1 ) \(=z[x^2-\left(y^2-2y+1\right)]=z[x^2-\left(y-1\right)^2=z\left(x-y+1\right)\left(x+y-1\right)\)
d/ x3 – 8y3 + x2 + 2xy + 4y2 = ( x3 – 8y3 ) + x2 + 2xy + 4y2 = ( x -2y )( x2 + 2xy + 4y2 ) + ( x2 + 2xy + 4y2 0 = ( x2 + 2xy + 4y2)( x -2y +1)
e/ 7x2 – 11x + 4 = 7x2 -7x -4x +4 = 7x( x-1 ) - 4( x - 1 ) = ( x - 1 )( 7x - 4 )
g/ 13x2 + 2xy – 15y2 = 13x2 - 13xy + 15xy - 15y2 = 13x( x - y ) + 15y( x - y ) = ( x - y )( 13x + 15y )
h/ x3 + 3x2 + 3x + 2 = x3 +2x2 + x2 +2x + x + 2 = x2( x + 2 ) + x( x + 2 ) + ( x + 2 ) = ( x + 2 )( x2 + x + 1 )
i/ x3 – 3x2 + 3x – 2 + xy – 2y = x3 - 2x2 - x2 + 2x + x - 2 +xy - 2y = x2( x - 2 ) - x( x - 2 ) + ( x - 2 ) + y( x - 2 ) = ( x - 2 )( x2 - x +1 + y )
Bài này không thể tìm được nhé bạn.
Đừng đăng bài không giải được nhé!
Chúc bạn học tốt.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với Em tham khảo tại link này nhé!
pt đã cho \(\Leftrightarrow\left(x-y\right)\left(x+3y\right)=2x+6y-x+y\)
\(\Leftrightarrow\left(x-y\right)\left(x+3y\right)=2\left(x+3y\right)-\left(x-y\right)\)
Đặt \(\left\{{}\begin{matrix}x-y=a\\x+3y=b\end{matrix}\right.\) với \(a,b\inℤ\) và \(b\ge4\)
pt thành \(ab=2a-b\)
\(\Leftrightarrow ab-2a+b-2=-2\)
\(\Leftrightarrow\left(a+1\right)\left(b-2\right)=-2\) (*)
Vì \(b\ge4\Leftrightarrow b-2\ge2\). Do đó (*) \(\Rightarrow\) \(b-2=2\) hay \(b=4\), nghĩa là dấu "=" phải xảy ra \(\Leftrightarrow x=y=1\). Thử lại, ta thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.