Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

abc=100a+10b+c=n2-1(*)
cba=100c+10b+a=n2-4n+4(**)
(*)-(**)=99(a-c)=4n+5
=> 4n-5 chia hết cho 99
Mà \(100\le abc\le999\)
=> \(100\le n^2-1\le999\)
<=> \(101\le n^2\le1000\)=\(11< 31\)=\(39\le4n-5\le199\)
Vì 4n+5 chia hết cho 99
Nên 4n-5=99
4n=99+5
4n=104
n=104:4
n=26
Vậy abc=675

Ta có:
abc - cba = (n2 - 1) - (n - 2)2
=> (100a + 10b + c) - (100c + 10b + a) = n2 - 1 - [(n - 2).n - (n - 2).2]
=> 100a + 10b + c - 100c - 10b - a = n2 - 1 - n2 + 2n + 2n - 4
=> 99a - 99c = 4n - 5
=> 99.(a - c) = 4n - 5
=> 4n - 5 chia hết cho 99
Mà 99 < abc < 1000 => 99 < n2 - 1 < 1000
=> 100 < n2 < 1001
=> 10 < n < 32
=> 35 < 4n - 5 < 123
=> 4n - 5 = 99
=> 4n = 99 + 5 = 104
=> n = 104 : 4 = 26
=> abc = 262 - 1 = 676 - 1 = 675
Vậy số cần tìm là 675

Bạn thử xem lại đề xem điều kiện số $1$ thì $abc=n^2-1$ hay $\overline{abc}=n^2-1$ ??

Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,
Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm
giúp e vs ạ! Cần gấp! Thanks!
Bài 1:
Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)
Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)
Vì: \(A\le999\) nên:
\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)
\(\Rightarrow A+B\le999\)
Xét các trường hợp \(A=999\) và \(A< 999\) từ đó :
\(\Rightarrow\overline{abcdef}=494209\)
Vậy số cần tìm là: \(494209\)

minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha

Có vẻ khá lâu rùi ko có ai giải bài này.
1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)
\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số
\(\overline{ab}^2-10.\overline{ab}=c^2+c\)
Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)
Vậy \(10\le\overline{ab}\le16\)
Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)
2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.
Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:
\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)
(Thay lần lượt các giá trị vô là xong)
Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.
Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)

2. Tìm số tự nhiên aabb biết: $\overline{aabb}=\overline{(a+1)(a+1)}.\overline{(b-1)(b-1)}$ - Số học - Diễn đàn Toán học
4. Bấm tổng sigma Shift + log
x = 1
cái số ở trên là 100
trong ngoặc là \(\left(\frac{X\left(-1\right)^{X+1}}{\left(X+1\right)\left(X+2\right)}\right)\)
kết quả: 0.07461166509
lấy phương trình trên trừ đi phương trình dưới ta có
\(\overline{abc}-\overline{cba}=n^2-1-\left(n-2\right)^2=4n-5\)
\(\Leftrightarrow99a-99c=4n-5=4\left(n-26\right)+99\)
rõ ràng a,c phải khác 0 thì abc và cba mới là số tự nhiên
do vế trái chia hết cho 99 nên vế phải cũng phải chia hết cho 99 , do đó tồn tại số tự nhiên k sao cho
\(\Rightarrow n-26=99k\)\(\Rightarrow99\left(a-c\right)=99\left(4k+1\right)\)
mà a và c là hai chữ số khác không nên hiệu a-c nằm trong tập {-8,8}
\(\Rightarrow k\in\left\{-2;-1;0;1\right\}\)từ đó ta tìm được \(n\in\left\{-172;-73;26;125\right\}\)
mà n là số tự nhiên lớn hơn 2 vậy nên \(\orbr{\begin{cases}n=26\\n=125\end{cases}}\Rightarrow\orbr{\begin{cases}\overline{abc}=26^2-1=675\\\overline{abc}=125^2-1=15624\end{cases}}\)
do abc là số có 3 chứ số nên chỉ có 675 lầ thỏa mãn đề
\(\hept{\begin{cases}\overline{abc}=100a+10b+c=n^2-1\left(1\right)\\\overline{cba}=100c+10b+a=n^2-4n+4\left(2\right)\end{cases}}\)
từ 1 zà 2 \(=>99\left(a-c\right)=4n-5=>4n-5⋮99\)
Mặt khác \(100\le n^2-1\le999\Leftrightarrow101\le n^2\le1000=>11\le n\le31\Leftrightarrow39\le4n-5\le119\)
từ 3 zà 4 => 4n-5=99 => n=26
zậy số cần tim là abc=675