Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
abc=100a+10b+c=n2-1(*)
cba=100c+10b+a=n2-4n+4(**)
(*)-(**)=99(a-c)=4n+5
=> 4n-5 chia hết cho 99
Mà \(100\le abc\le999\)
=> \(100\le n^2-1\le999\)
<=> \(101\le n^2\le1000\)=\(11< 31\)=\(39\le4n-5\le199\)
Vì 4n+5 chia hết cho 99
Nên 4n-5=99
4n=99+5
4n=104
n=104:4
n=26
Vậy abc=675
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
abc - cba = (n2 - 1) - (n - 2)2
=> (100a + 10b + c) - (100c + 10b + a) = n2 - 1 - [(n - 2).n - (n - 2).2]
=> 100a + 10b + c - 100c - 10b - a = n2 - 1 - n2 + 2n + 2n - 4
=> 99a - 99c = 4n - 5
=> 99.(a - c) = 4n - 5
=> 4n - 5 chia hết cho 99
Mà 99 < abc < 1000 => 99 < n2 - 1 < 1000
=> 100 < n2 < 1001
=> 10 < n < 32
=> 35 < 4n - 5 < 123
=> 4n - 5 = 99
=> 4n = 99 + 5 = 104
=> n = 104 : 4 = 26
=> abc = 262 - 1 = 676 - 1 = 675
Vậy số cần tìm là 675
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn thử xem lại đề xem điều kiện số $1$ thì $abc=n^2-1$ hay $\overline{abc}=n^2-1$ ??
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,
Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm
giúp e vs ạ! Cần gấp! Thanks!
Bài 1:
Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)
Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)
Vì: \(A\le999\) nên:
\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)
\(\Rightarrow A+B\le999\)
Xét các trường hợp \(A=999\) và \(A< 999\) từ đó :
\(\Rightarrow\overline{abcdef}=494209\)
Vậy số cần tìm là: \(494209\)
![](https://rs.olm.vn/images/avt/0.png?1311)
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Có vẻ khá lâu rùi ko có ai giải bài này.
1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)
\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số
\(\overline{ab}^2-10.\overline{ab}=c^2+c\)
Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)
Vậy \(10\le\overline{ab}\le16\)
Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)
2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.
Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:
\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)
(Thay lần lượt các giá trị vô là xong)
Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.
Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2. Tìm số tự nhiên aabb biết: $\overline{aabb}=\overline{(a+1)(a+1)}.\overline{(b-1)(b-1)}$ - Số học - Diễn đàn Toán học
4. Bấm tổng sigma Shift + log
x = 1
cái số ở trên là 100
trong ngoặc là \(\left(\frac{X\left(-1\right)^{X+1}}{\left(X+1\right)\left(X+2\right)}\right)\)
kết quả: 0.07461166509
lấy phương trình trên trừ đi phương trình dưới ta có
\(\overline{abc}-\overline{cba}=n^2-1-\left(n-2\right)^2=4n-5\)
\(\Leftrightarrow99a-99c=4n-5=4\left(n-26\right)+99\)
rõ ràng a,c phải khác 0 thì abc và cba mới là số tự nhiên
do vế trái chia hết cho 99 nên vế phải cũng phải chia hết cho 99 , do đó tồn tại số tự nhiên k sao cho
\(\Rightarrow n-26=99k\)\(\Rightarrow99\left(a-c\right)=99\left(4k+1\right)\)
mà a và c là hai chữ số khác không nên hiệu a-c nằm trong tập {-8,8}
\(\Rightarrow k\in\left\{-2;-1;0;1\right\}\)từ đó ta tìm được \(n\in\left\{-172;-73;26;125\right\}\)
mà n là số tự nhiên lớn hơn 2 vậy nên \(\orbr{\begin{cases}n=26\\n=125\end{cases}}\Rightarrow\orbr{\begin{cases}\overline{abc}=26^2-1=675\\\overline{abc}=125^2-1=15624\end{cases}}\)
do abc là số có 3 chứ số nên chỉ có 675 lầ thỏa mãn đề
\(\hept{\begin{cases}\overline{abc}=100a+10b+c=n^2-1\left(1\right)\\\overline{cba}=100c+10b+a=n^2-4n+4\left(2\right)\end{cases}}\)
từ 1 zà 2 \(=>99\left(a-c\right)=4n-5=>4n-5⋮99\)
Mặt khác \(100\le n^2-1\le999\Leftrightarrow101\le n^2\le1000=>11\le n\le31\Leftrightarrow39\le4n-5\le119\)
từ 3 zà 4 => 4n-5=99 => n=26
zậy số cần tim là abc=675